Skip to main content

Discovery of BIRM 270: A New Class of Leukotriene Biosynthesis Inhibitors

  • Chapter
The Search for Anti-Inflammatory Drugs

Abstract

Several events in the late 1970s and early 1980s helped to shape the research agenda for pharmaceutical companies engaged in the search for a new generation of anti-inflammatory agents. The structural identity of the arachi- donic acid (AA) metabolite leukotriene B4 (LTB4) (Borgeat and Samuels- son, 1979) and the discovery that it was a potent neutrophil chemoattractant (Ford-Hutchinson et al., 1980) helped to elucidate how leukocytes migrate to a site of inflammation. In addition, the identification of leukotriene C4 (LTC4) as a component of slow reacting substance of anaphylaxis (SRS- A) demonstrated that arachidonic acid-derived substances were also potent bronchoconstrictors (Murphy and Hammarström, 1979; Corey et al., 1980; Sirois and Borgeat, 1980). Common to both classes of leukotrienes is the enzyme 5-lipoxygenase (5-LO) which introduces a molecule of oxygen at the C-5 position of AA followed by cyclization to the epoxide intermediate ITA4. Further reaction with a glutathione S-transferase yields the peptidyl LTs, LTC4 and its metabolites LTD4 and LTE4. Conversion of the epoxide by LTA4 hydrolase produces LTB4. Given that AA also serves as a substrate for the cyclooxygenase (CO) pathway to produce pro-inflammatory prostaglandins and thromboxane, interest was certainly reinforced in inhibiting one or both arms of what is often called the arachidonic acid cascade.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abraham WM (1990): The role of eicosanoids in allergen-induced early and late bronchial responses in allergic sheep. Adv Prostaglandin Thromboxane Leukotriene Res 20: 201–208

    CAS  Google Scholar 

  • Borgeat P, Samuelsson B (1979): Metabolism of arachidonic acid in polymorphonuclear leukocytes: effect of the ionophore A23187. J Biol Chem 254: 7865–7869

    PubMed  CAS  Google Scholar 

  • Cockcroft S (1992): G-protein-regulated phospholipases C, D and A2-mediated signalling in neutrophils. Biochim Biophys Acta 1113: 135–160

    PubMed  CAS  Google Scholar 

  • Corey EJ, Clark DA, Goto G, Marfat A, Mioskowski C, Samuelsson B, Ham-marström S (1980): Stereospecific total synthesis of a “slow reacting substance” of anaphylaxis, leukotriene C-l. J Am Chem Soc 102: 1436–1439

    Article  CAS  Google Scholar 

  • Dixon RAF, Diehl RE, Opas E, Rands E, Vickers PJ, Evans JF, Gillard JW, Miller DK (1990): Requirement of a 5-lipoxgenase-activating protein for leukotriene synthesis. Nature 343: 282–284

    Article  PubMed  CAS  Google Scholar 

  • Farina PR, Graham AG, Hoffman AF, Watrous JM, Borgeat P, Nadeau M, Hansen G, Dinallo RM, Adams J, Miao CK, Lazer ES, Parks TP, Homon CA (1994): BIRM 270: A novel inhibitor of arachidonate release that blocks leukotriene B4 and platelet-activating factor biosynthesis in human neutrophils. J Pharm Exp Ther 271: 1418–1426

    CAS  Google Scholar 

  • Fonteh AN, Chilton FH (1993): Mobilization of different arachidonate pools and their roles in the generation of leukotrienes and free arachidonic acid during immunologic activation of mast cells. J Immunol 150: 563–570

    PubMed  CAS  Google Scholar 

  • Ford-Hutchinson AW, Bray MA, Doig MV, Shipley ME, Smith MJ (1980): Leukotriene B, a potent chemokinetic and aggregating substance released from polymorphonuclear leukocytes. Nature 286: 264–265

    Article  PubMed  CAS  Google Scholar 

  • Gillard J, Ford-Hutchinson AW, Chan C, Charleson S, Denis D, Foster A, Fortin R, Leger S, McFarlane CS, Morton H, Piechuta H, Riendeau D, Rouzer CA, Rokach J, Young R, MacIntyre DE, Peterson L, Bach T, Eiermann G, Hopple S, Humes J, Hupe L, Luell S, Metzger J, Meurer R, Miller DK, Opas E, Pacholok S (1989): L-663,536 (MK 886) (3-[l-(4-chlorobenzyl)-3-r-butyl-thio-5-isopropylindol-2-yl]-2,2-dimethylpropanoic acid), a novel, orally active leukotriene biosynthesis inhibitor. Can J Physiol Pharmacol 67: 456–464

    Article  PubMed  CAS  Google Scholar 

  • Hirata F ( 1981 ): The regulation of lipomodulin, a phospholipase inhibitory protein, in rabbit neutrophils by phosphorylation. J Biol Chem 256: 7730–7733

    Google Scholar 

  • Hirata F, Schiffmann E, Venkatasubramanian K, Salomon D, Axelrod J (1980): A phospholipase A2 inhibitory protein in rabbit neutrophils induced by glucocorticoids. Proc Natl Acad Sci 77: 2533–2536

    Article  PubMed  CAS  Google Scholar 

  • Lazer ES, Farina PR, Gundel RH, Wegner CD (1991): 2,6-Disubstituted-4-(2-arylethenyl)phenol 5-lipoxygenase inhibitors: Development and profile of BI-L-239. Drugs Future 16: 641–646

    Google Scholar 

  • Lazer ES, Miao CK, Wong HC, Sorcek R, Spero DS, Gilman A, Pal K, Behnke M, Graham AG, Watrous JM, Homon CA, Nagel J, Shah A, Guindon Y, Farina PR, Adams J (1994): Benzoxazolamines and benzothiazolamines: Potent, enantioselective inhibitors of leukotriene biosynthesis. J Med Chem 37: 913–923

    Article  PubMed  CAS  Google Scholar 

  • McDonald PP, McColl SR, Naccache PH, Borgeat P (1991): Studies on the activation of human neutrophil 5-lipoxygenase induced by natural agonists and Ca2+ ionophore A23187. Biochem J 280: 379–385

    PubMed  CAS  Google Scholar 

  • Moore GGI, Swingle KF (1982): 2,6-Di-tert-butyl-4-(2′-thenoyl)phenol (R830): A novel nonsteroidal anti-inflammatory agent with antioxidant properties. Agents Actions 12: 674–683

    Article  PubMed  CAS  Google Scholar 

  • Murphy RC, Hammarström S (1979): Structure of leukotriene C: Identification of the amino acid part. Proc Natl Acad Sci USA 76: 4275–4281

    Article  PubMed  CAS  Google Scholar 

  • Rouzer CA, Ford-Hutchinson AW, Morton HE, Gillard JW (1990): MK886, a potent and specific leukotriene biosynthesis inhibitor blocks and reverses the membrane association of 5-lipoxygenase in ionophore-challenged leukocytes. J Biol Chem 265: 1436–1442

    PubMed  CAS  Google Scholar 

  • Rouzer CA, Kargman S (1988): Translocation of 5-lipoxygenase to the membrane in human leukocytes challenged with ionophore A23187. J Biol Chem 263: 10980–10988

    PubMed  CAS  Google Scholar 

  • Sirois P, Borgeat P (1980): From slow reacting substance of anaphylaxis (SRS-A) to leukotriene D4 (LTD4). Int J Immunopharmac 2: 281–293

    Article  CAS  Google Scholar 

  • Vadas P, Pruzanski W (1986): Role of secretory phospholipase A2 in the pathobi-ology of disease. Lab Invest 55: 391–404

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Birkhäuser Boston

About this chapter

Cite this chapter

Farina, P.R., Homon, C.A., Lazer, E.S., Parks, T.P. (1995). Discovery of BIRM 270: A New Class of Leukotriene Biosynthesis Inhibitors. In: Merluzzi, V.J., Adams, J. (eds) The Search for Anti-Inflammatory Drugs. Birkhäuser Boston. https://doi.org/10.1007/978-1-4615-9846-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-9846-6_9

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-1-4615-9848-0

  • Online ISBN: 978-1-4615-9846-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics