Skip to main content

Transient Effects of Low-Level Microwave Irradiation on Bioelectric Muscle Cell Properties and on Water Permeability and Its Distribution

  • Chapter
Fundamental and Applied Aspects of Nonionizing Radiation

Abstract

Microwave radiation effects on passive and dynamic electrical properties and on cell water parameters were studied in muscle cells from muscles of the South American Frog Leptodactilus ocellatus. Microwave exposure of 10 mW/cm2 for a period of 120 minutes produced transient changes in specific membrane resistance Rm, the membrane capacitance Cm and the space constant λ. Those electrical parameters related to the excitation and propagation of the action potential, i.e., the rate constants kr and kK, the maximum rate of rise v̇+ and fall v̇-of the action potential, the limiting membrane conductances (gNa and gK), the peaks of sodium inward and potassium outward ionic currents, the net ionic charge accumulation per action potential and the propagation velocity of the action potential, were all transiently altered. The water membrane permeability and the fraction of osmotically available cell volume were also transiently altered.

The analysis of these parameters has shown that the transient changes evoked by microwave radiation are larger in muscle cells from “winter frogs” than from “summer frogs.” Seasonal differences in the observed transient microwave radiation effects were analyzed. It was concluded that microwave exposure to 10mW/cm2 did not produce permanent effects on electrical and cell water parameters.

This work was supported by the Office of Naval Research, U.S. Department of the Navy; the Comando General de la Armada Argentina and the Comando General del Ejercito, Direccion General de Investigacion y Desarrollo, Ministerio de Defensa, Republica Argentina.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  • Chan, K. A., R. A. Sigelmann, A. W. Guy and J. F. Lehmann, Calculation by the Method of Finite Differences of the Temperature Distribution in Layered Tissues. IEEE Transactions on Biomed. Engineering. Vol. BME-20 N°2: 86-90 (March 1973).

    Google Scholar 

  • Fan, L. T., F. T. Hsu and C. L. Hwang. A Review on Mathematical Models of the Human Thermal System. IEEE Trans. Biomed Engineering. Vol. BME-18 N° 3: 218-234 (May 1971).

    Google Scholar 

  • Fatt, P. and B. Katz. An Analysis of the Endplate Potential Recorded with an Intracellular Electrode. J. Physiol. 115: 320–370 (1951).

    Google Scholar 

  • Florkin, M. and E. Schoffeniels. Molecular Approaches to Ecology. Academic Press, New York (1969).

    Google Scholar 

  • Frank, K. and M. C. Becker. Microelectrodes for recording and stimulation, in Physical Techniques in Biological Research. 5: 22–87. Academic Press, New York (1964).

    Google Scholar 

  • Gordon, Z. V. The problem of the biological action of UHF. In A.A. Letavet and Z. V. Gordon (Eds.), The biological action of UHF, Moscow Acad. Med. Sci. U.S.S.R., P. 2 (OTS62-19175, R. 816) (1962).

    Google Scholar 

  • Gordon, Z. V. Biological Effect of Microwaves in Occupational Hygiene. Israel Program for Scientific Translations, Jerusalem (1970).

    Google Scholar 

  • Graham, D. and D. McRuer. Analysis of non-linear control systems. John Wiley and Sons, Inc. N. Y. (1961)

    Google Scholar 

  • Hodgkin, A. L. and W. A. H. Rushton. The electrical constants of a crustacean nerve fiber. Proc. Roy. Soc. B 133: 444–479 (1946).

    Article  Google Scholar 

  • Hodgkin, A. L. and A. F. Huxley. A quantitative description of membrane current and its applications to conduction and excitation in nerve. J. Physiol. 117: 500–544 (1952).

    Google Scholar 

  • Hubbard, S. J. The electrical constants and the component conductances of frog skeletal muscle after denervation. J. Physiol. 165: 443–456 (1963).

    Google Scholar 

  • Jenerick, H. Phase Plane Trajectories of the Muscle Spike Potential. Biophys, J. 3: 363–377 (1963).

    Article  Google Scholar 

  • Jenerick, H. Analysis of the striated muscle fiber action current. Biophys. J. 4: 77–91 (1964).

    Article  Google Scholar 

  • Kamenskiy, Yu I. The influence of microwaves on the functional conditions of the nerve. Biofizika 9: 695–700 (ATD Report T-65-39, Library of Congress, Transi.) (1964).

    Google Scholar 

  • Kamenskiy, Yu I. “Effect of Microwaves on the Kinetics of Electric Parameters of a Nerve Impulse” Trans. Moscow Society of Naturalists 28: 164–172 (1968).

    Google Scholar 

  • Katz, B. The electrical properties of the muscle fiber membrane. Proc. Roy. Soc. B. 135: 506–534 (1948).

    Article  Google Scholar 

  • Lobanova Ye. A. Survival and development of animals with various intensities and durations of the influence of UHF. In A, A. Letavet and Z. V. Gordon (Eds.), Biological action of UHF. Moscow: Acad. Med. Sci. USSR: 68-74 (OTS 62-19175 R.816) (1962).

    Google Scholar 

  • Lobanova Ye. A. and Gordon, Z. V. Investigation of the olfactory sensitivity in persons subject to UHF Fields. In A. A. Letavet and Z. V. Gordon (Eds.), Biological Action of UHF. Moscow: Acad. Med. Sci. USSR: 50-56 (OTS 62-19175 R.816) (1962).

    Google Scholar 

  • Lobanova Ye. A. and M. S. Tolgskaya. Change in the higer nervous activity and interneuron connections in the cerebral cortex of animals under the influence of UHF. In A. A. Letavet and Z. V. Gordon (Eds.), Biological Action of UHF. Moscow: Acad. Med. Sci. USSR: 68-74 (OTS 62-19175 R.816) (1962).

    Google Scholar 

  • Lobanova Ye A. and A. V. Goncharova. Investigation of conditioned reflex activity in animals subjected to the effect of ultrashort and short radio-waves. Inst. Occupational Hygiene, Acad. Med. USSR; Medicine 1: 29–33 (1971).

    Google Scholar 

  • McAfee, R. D. “Neurophysiological effect of 3cm microwave radiation.” Amer. J. Physiol. 200: 192 (1961).

    Google Scholar 

  • McAfee, R. D. “Physiological effects of thermide and microwave stimulation of peripheral,” Amer. J. Physiol. 203: 374 (1962).

    Google Scholar 

  • McAfee, R. D. “The neural and hormonal response to microwave stimulation of peripheral nerves,” presented at the Symp. Biol. Eff. Health Implic. Microwave Radiat., Richmond, Va. (1969).

    Google Scholar 

  • McLees, B. D. and E. D. Finch. Analysis of Reported Physiologic Effects of Microwave Radiation, in Advances in Biological and Medical Physics, Vol. 14, Academic Press, New York pp. 163–223 (1973).

    Google Scholar 

  • Michaelson, S. M. The Tri-Service Program. A tribute to George M. Knauf, USAF (MC), IEEE Transactions on Microwave Theory and Techniques, Vol. MTT 19, N° 2: 131–146 (1971).

    Google Scholar 

  • Minorsky, N. Introduction to non-linear mechanisms. Ann Arbor, J. W. Edwards, U.S.A. (1947).

    Google Scholar 

  • Nastuk, W. L. and A. L. Hodgkin. The electrical activity of single muscle fibers. Jour. Cell Comp. Physiol. 35: 39–73 (1950).

    Article  Google Scholar 

  • Plonsey, R. and Fleming, D. G. Bioelectric Phenomena. McGraw Hill Book Co., New York, pg. 78–201 (1969).

    Google Scholar 

  • Ponder, E. The coefficient of thermal conductivity of blood and of various tissues. J. Gen. Physiol. 45: 545–551 (1962).

    Article  Google Scholar 

  • Portela, A., J. C. Perez, M. Luchelli, P. A. Stewart, T. Hajduk, M. N. Parisi and A. Garrison. Potassium and Cesium Effects on Sodium Efflux and Oxygen Consumption of Muscle Cells. Biochim. Biophys. Acta 109: 495–502 (1965).

    Article  Google Scholar 

  • Portela, A., J. G. Vaccari, R. J. Pérez, A. Ardizzone, J. C. Pérez. Electrical Membrane Constants of Sartorius Muscle Fibers from the South American Frog Leptodactilus ocellatus. Experientia 26: 957 (1970).

    Article  Google Scholar 

  • Portela, A., R. J. Perez, J. Vaccari, J. C. Perez and P. Stewart. Muscle Membrane Depolarization by Acetylcholine, Choline and Carbamylcholine, Near and Remote from Motor End-Plates. J. Pharmacol. Exp. Ther. 175: 476–482 (1970a).

    Google Scholar 

  • Portela, A., J. Vaccari, P. A. Stewart, R. J. Perez and J. C. Perez. Cesium Effects on Muscle Membrane Responses to Quaternary Ammoniumions. J. Pharmacol. Exp. Ther. 175: 483–488 (1970 b).

    Google Scholar 

  • Portela, A., M. Garfunkel, J. G. Vaccari, A. M. Delbue, P. A. Stewart and J. C. Pérez. Radiation Effects on Water Permeability and Distribution in Frog Muscle Cells. Radiation Res. 47: 704–715 (1971).

    Article  Google Scholar 

  • Portela, A., M. Brennan, J. Vaccari, J. C. Perez and P. Stewart. Denervation Effects on Water Permeability and Distribution in Frog Skeletal Muscle Cells. Studia Biophysica, in press, August 1974.

    Google Scholar 

  • Portela, A., J. G. Vaccari, S. M. Michaelson, O. Llobera, M. Brennan, A. E. Gosztonyi, J. C. Pérez and J. Jenerick. Transient Effects of Low-Level Microwave Irradiation on Bioelectric Muscle Cell Properties and on Water Permeability and Its Distribution — Studia Biophysica, in press, September 1974.

    Google Scholar 

  • Presman, A. S. and N. A. Levitina. The nonthermal effect of microwaves on the systolic rhythm of animals. II The effect of pulsed microwaves. Byull. Eksp. Biol. Med. 52: 39–43 (1962).

    Google Scholar 

  • Presman, A. S. and N. A. Levitina. Nonthermal action of microwaves on the cardiac rhythm. Byull.Eksp. Biol. Med. 53: 36–39 (1963).

    Article  Google Scholar 

  • Presman, A. S. Electromagnetic Fields and Life (Translated from Russian) New York-London: Plenum (1970).

    Google Scholar 

  • Prosser, C. L. (editor). Physiological Adaptation. American Physiological Society, Washington, D. C. (1958).

    Google Scholar 

  • Schwan, H. P., A. Anne, M. Saito and O. M. Salati. “Relative microwave absorption cross sections of biological significance” in Biological Effects of Microwave Radiation, Vol. 1, New York, Plenum Press, pgs. 153-176 (1961).

    Google Scholar 

  • Shitzer, A. Addendum to “A Review on Mathematical Models of the Human Thermal System.” IEEE Trans. Biomed. Eng. Vol. BME-20, N° 1: 65-66 (January 1973).

    Google Scholar 

  • Thesleff, S. The mode of neuromuscular block caused by acetylochline, nicotine, decamethonium and succinylcholine. Acta Physiol. Scand., 34: 218–231 (1955).

    Article  Google Scholar 

  • Vernberg, W. B. and F. J. Vernberg. Environmental Physiology of Marine Animals. Springer-Verlag, New York Inc. (1972).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1975 Plenum Press, New York

About this chapter

Cite this chapter

Portela, A. et al. (1975). Transient Effects of Low-Level Microwave Irradiation on Bioelectric Muscle Cell Properties and on Water Permeability and Its Distribution. In: Michaelson, S.M., Miller, M.W., Magin, R., Carstensen, E.L. (eds) Fundamental and Applied Aspects of Nonionizing Radiation. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-0760-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-0760-0_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-0762-4

  • Online ISBN: 978-1-4684-0760-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics