Skip to main content

Acoustic Waves in Saturated Sediments

  • Chapter
Physics of Sound in Marine Sediments

Part of the book series: Marine Science ((MR))

Abstract

This paper discusses a phenomenological model that describes the propagation of sound waves in saturated sediments. The compressibility and shearing stiffness of the skeletal frame, the compressibility of the fluid, and two major sources of attenuation are included in the model. Attenuation is attributed to two fundamentally different types of energy loss, one resulting from inelasticity of the skeletal frame and the other due to motion of the pore fluid relative to the frame, with each significant in a different frequency range.

Attenuation, dispersion, and wave velocities are found to be in favorable agreement with experimental results for both sands and fine-grained sediments over a wide range of frequencies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Rejerences

  • Biot, M. A., “General Theory of Three-Dimensional Consolidation,” J. A.pl. Phys., 12, 155–164, 1941.

    Google Scholar 

  • Biot, M. A., “Theory of Elastic Waves in a Fluid-Saturated Porous Solid. I. Low-Frequency Range,” J. A.oust. Soc. Am., 28, 168–178, 1956a.

    Article  Google Scholar 

  • Biot, M. A., “Theory of Elastic Waves in a Fluid-Saturated Porous Solid. II. Higher Frequency Range,” J. A.oust. Soc. Am., 28, 179–191, 1956b.

    Article  Google Scholar 

  • Biot, M. A., “Mechanics of Deformation and Acoustic Propagation in Porous Media,” J. A.pl. Phys., 33, 1482–1498, 1962a.

    Google Scholar 

  • Biot, M. A., “Generalized Theory of Acoustic Propagation in Porous Dissipative Media,” J. A.oust. Soc. Am., 34, 1254–1264, 1962b.

    Article  Google Scholar 

  • Biot, M. A., and D. G. Willis, “The Theory of Consolidation,” J. Appl Elastic Coefficients of the Mech., 24, 594–601, 1957

    Google Scholar 

  • Bishop, A. W., and D. J. Hankel, The Measurement of Soil Properties in the Triaxial Test, Edward Arnold,Ltd., London, 1957.

    Google Scholar 

  • Busby, J., and E. G. Richardson, “The Absorption of Sound in Sediments,” Geophysics, 22, 821–828, 1957.

    Article  Google Scholar 

  • Geertsma, J., and D. C. Smit, “Some Aspects of Elastic Wave Propagation in Fluid-Saturated Porous Solids,” Geophysics, 26, 169–181, 1961.

    Article  Google Scholar 

  • Hall, J. R.,Jr., and F. E. Richard, Jr., “Dissipation of Elastic Wave Energy in Granular Solid, ” J. Soil Mech. Found. Div., A.S.C.E., 89(SM6), 27–56, 1963.

    Google Scholar 

  • Hamilton, E. L., “Compressional-Wave Attenuation in Marine Sediments,” Geophysics, 37, 620–646, 1972.

    Article  Google Scholar 

  • Hampton, L. D., “Acoustic Properties of Sediments,” J. Acoust. Soc. Am., 42, 882–890, 1967.

    Article  Google Scholar 

  • Hampton, L. D., and A. L. Anderson, “Acoustics and Gas in Sediments - Applied Research Laboratories Experience,” Proc. ONR Conf. Natural Gases in Marine Sediments and Their Mode of Distribution, Lake Arrowhead, Calif., 1973.

    Google Scholar 

  • Hardin, B. O. O., “The Nature of Damping in Sands,” J. Soil. Mech. Found. Div., A.S.C.E., 91(SM1), 1965.

    Google Scholar 

  • Kryloff, N., and N. Bogoliuboff, Introduction to Non-Linear Mechanics, Princeton University Press, Princeton, N. J., 1947, pp- 55–63.

    Google Scholar 

  • Lambe, T. S., and R. V. Whitman, Soil Mechanics, John Wiley and Sons, Inc., New York, 1969, pp. 281–294.

    Google Scholar 

  • McCann, C., and D. M. McCann, “The Attenuation of Compressional Waves in Marine Sediments,” Geophysics, 34, 882–892, 1969.

    Google Scholar 

  • McLeroy, E. C.,and A. DeLoach. DeLoach, “Sound Speed and Attenuation, from 15 to 1500 kHz, Measured in Natural Sea-Floor Sediments,” J. Acoust. Soc. Am., 44, 1148–1150, 1968.

    Article  Google Scholar 

  • Nolle, A. W., W. A. Hoger, J. F. Mifsud, W. R. Runyan, and M. B. Ward, “Acoustical Properties of Water-Filled Sands,” J. Acoust. Soc. Am., 35, 1394–1408, 1963.

    Article  Google Scholar 

  • Shumway, G., “Sound Speed and Absorption Studies of Marine Sediments by a Resonance Method,” Geophysics, 25, 451–467, 659–682, 1960.

    Google Scholar 

  • Stoll, R. D., and G. M. Bryan, “Wave Attenuation in Saturated Sediments,” J. Acoust. Soc. Am., 47, 1440–1447, 1970.

    Article  Google Scholar 

  • Wood, A. B.,and D. E. Weston, “The Propagation of Sound in Mud,” Acustica, 14, 156–162, 1964.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1974 Plenum Press, New York

About this chapter

Cite this chapter

Stoll, R.D. (1974). Acoustic Waves in Saturated Sediments. In: Hampton, L. (eds) Physics of Sound in Marine Sediments. Marine Science. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-0838-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-0838-6_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-0840-9

  • Online ISBN: 978-1-4684-0838-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics