Skip to main content

Monoclonal Antibodies to Embryonic Neurons

Cell-Specific Markers for Chick Ciliary Ganglion

  • Chapter
Neuronal Development

Part of the book series: Current Topics in Neurobiology ((CTNB))

Abstract

Both genetic and epigenetic events are involved in the generation of precise connections in the nervous system. Vast numbers of individual interactions between single neurons and their microenvironments contribute to the formation of complex neuronal pathways. Environmental cues may come to a developing neuron from many different sources, but there are at least three for which there is good experimental evidence: (1) the insoluble intercellular matrix or substratum consisting of collagens, glycosaminoglycans, fibronectin, etc.1; (2) soluble diffusible factors (neurotrophic factors, growth factors, hormones)2; and (3) the cell surfaces of other neuronal and nonneuronal cells with which a developing neuron comes in contact.3 The cell surface of the target tissue or material associated with it such as the basal lamina probably serves to trigger the formation of the synapse4 and, at least in amphibians,5 its specific regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barondes, S. H., 1970, Brain glycomacromolecules and interneural recognition, in: The Neurosciences Second Study Program, ( F. O. Schmitt, ed.), pp. 747–760, Rockefeller University Press, New York.

    Google Scholar 

  2. Greene, L. A., and Shooter, E. M., 1980, The nerve growth factor: Biochemistry, synthesis and mechanisms of action, Ann. Rev. Neurosci. 3: 353.

    Article  Google Scholar 

  3. Rutishauser, U., Thiery, J.-P., Brackenbury, R., Sela, B.-A., and Edelman, G. M., 1976, Mechanism of adhesion among cells from neural retina of chick embryo, Proc. Natl. Acad. Sci. U.S.A. 73: 577.

    Article  Google Scholar 

  4. Jacob, M., and Lentz, T.-L., 1979, Localization of acetylcholine receptors by means of horseradish peroxidase-a-bungarotoxin during formation and development of the neuromuscular junction in the chick embryo, J. Cell Biol. 82: 195.

    Article  Google Scholar 

  5. Sanes, J. R., Marshall, L. M., and McMahan, U. J., 1978, Reinnervation of muscle fiber basal lamina after removal of muscle fibers, J. Cell. Biol. 78: 357.

    Article  Google Scholar 

  6. Gottlieb, D. T., and Glaser, L., 1980, Cellular recognition during neural development, Ann. Rev. Neurosci. 3: 303.

    Article  Google Scholar 

  7. Landmesser, L. T., 1980, The generation of neuromuscular specificity, Ann. Rev. Neurosci. 3: 279.

    Article  Google Scholar 

  8. Muller, K. J., 1979, Synapses between neurones in the central nervous system of the leech, Biol. Rev. 54: 99.

    Article  Google Scholar 

  9. Schmechel, D., Marangos, P. J., Athanosios, P. Z., Brightman, M., and Goodwin, F. D., 1978, Brain enolases as specific markers of neuronal and glial cues, Science 199: 312.

    Article  Google Scholar 

  10. Mirsky, R., Wendon, L. B., Black, P., Stolkin, C., and Bray, D., 1978, Tetanus toxin: A cell surface marker for neurones in culture, Brain Res. 148: 251.

    Article  Google Scholar 

  11. Fields, K. L., Brockes, J. P., Mirsky, R., and Wendon, L. B., 1978, Cell surface markers for distinguishing different types of rat dorsal root ganglion cells in culture, Cell 14: 43.

    Article  Google Scholar 

  12. Hooghe-Peters, E. L., Fowlkes, B. J., and Hooghe, R. J., 1979, A new neuronal marker identified by phosphorylcholine-binding myeloma proteins, Nature (London) 281: 376.

    Article  Google Scholar 

  13. Zipser, B., and McKay, R., 1981, Monoclonal antibodies distinguish identifiable neurones in the leech, Nature (London) 289: 549.

    Article  Google Scholar 

  14. Barnstable, C. J., 1980, Monoclonal antibodies which recognize different cell types in rat retina, Nature (London) 286: 231.

    Article  Google Scholar 

  15. Trisler, G. D., Schneider, M. S., and Nirenberg, M., 1981, A topographic gradient of molecules in retina can be used to identify neuron position. Proc. Natl. Acad. Sci. LISA 78: 2145.

    Article  Google Scholar 

  16. Cohen, J. and Selvendren, S. Y., 1981, A neuronal cell-surface antigen is found in the CNS but not in peripheral neurones. Nature 291: 421.

    Article  Google Scholar 

  17. Vulliamy, T., Rattray, S., and Mirsky, R., 1981, Cell surface antigen distinguishes sensory and autonomic peripheral neurones from central neurones, Nature (London) 291: 418.

    Article  Google Scholar 

  18. Pfenninger, K. H., and Maylié-Pfenninger, M.-F., 1979, Properties and dynamics of plasmalemmal glycoconjugates in growing neuntes, Progr. Brain Res. 51: 83.

    Article  Google Scholar 

  19. Kohler, G., and Milstein, C., 1975, Continuous cultures of fused cells secreting antibody of predefined specificity, Nature (London) 256: 495.

    Article  Google Scholar 

  20. Eisenbarth, G. S., Walsh, F. S., and Nirenberg, M., 1979, Monoclonal antibody to a plasma membrane antigen of neurons, Proc. Natl. Acad. Sci. U.S.A. 76: 4913.

    Article  Google Scholar 

  21. Cuello, A. C., Milstein, C., and Priestly, J. V., 1980, Use of monoclonal antibodies in immunocytochemistry with special reference to the central nervous system, Brain Res. Bull. 5: 575.

    Article  Google Scholar 

  22. Marwitt, R., Pilar, G., and Weakly, J. N., 1971, Characterization of two ganglion cell populations in avian ciliary ganglia, Brain Res. 25: 317.

    Article  Google Scholar 

  23. Barald, K. F., and Berg, D. K., 1979, Ciliary ganglion neurons in cell culture: High affinity choline uptake and autoradiographic choline labeling, Dev. Biol. 72: 15.

    Article  Google Scholar 

  24. Helfand, S. L., Smith, G. A., and Wessells, N. K., 1976, Survival and development in culture of dissociated parasympathetic neurons from ciliary ganglia, Dev. Biol. 50: 541.

    Article  Google Scholar 

  25. Nishi, R., and Berg, D. K., 1977, Dissociated ciliary ganglion neurons in vitro: Survival and synapse formation, Proc. Natl. Acad. Sci. U.S.A. 74: 5171.

    Article  Google Scholar 

  26. Barald, K., 1981, Cell surface specific monoclonal antibodies to chick ciliary ganglion neurons, Soc. Neurosci. Abstr., Vol. 7: 120.

    Google Scholar 

  27. Newgreen, D. F., Ritterman, M., and Peters, E. A., 1979, Morphology and behavior of neural crest cells of chick embryo in vitro, Cell Tissue Res. 203: 115.

    Article  Google Scholar 

  28. Cohen, A. M., 1977, Independent expression of the adrenergic phenotype by neural crest cells in vitro, Proc. Natl. Acad. Sci. U.S.A. 74: 2899.

    Article  Google Scholar 

  29. Norr, S. G., 1973, In vitro analysis of sympathetic neuron differentiation from chick neural crest cells, Dev. Biol. 34: 16.

    Article  Google Scholar 

  30. Oi, V. T., and Herzenberg, L. A., 1980, Immunoglobulin producing hybrid cell lines, in: Selected Methods in Cellular Immunology ( B. B. Mishell and S. M. Shiigi, eds.), pp. 351–372, W. H. Freeman, San Francisco.

    Google Scholar 

  31. Robertson, S. M., Mayfield, G., and Kettman, J. R., 1980, The use of polyclonal activators in the generation of monoclonal antibodies, Microbiology 1980. (D. Schlessinger, ed.), pp. 181–185. Washington.

    Google Scholar 

  32. Kohler, G. and Milstein, C., 1976, Derivation of specific antibody-producing tissue culture and tumor lines by cell fusion, Eur. J. Immunol. 6: 511.

    Article  Google Scholar 

  33. Barald, K. F., and Berg, D. K., 1979, Autoradiographic labeling of spinal cord neurons with high affinity choline uptake in cell culture, Dev. Biol. 72: 1.

    Article  Google Scholar 

  34. D’Amico-Martel, A., and Noden, D. M., 1980, An autoradiographic analysis of the development of the chick trigeminal ganglion, J. Embryol. Exp. Morphol. 55: 167.

    Google Scholar 

  35. Sorimachi, M., and Kataoka, K., 1974, Developmental change of choline acetyltransferase and acetylcholinesterase in the ciliary and the superior cervical ganglion of the chick, Brain Res. 70: 123.

    Article  Google Scholar 

  36. Pettman, B., Louis, J. C., and Sensenbrenner, M., 1979, Morphological and biochemical maturation of neurons cultured in the absence of glial cells, Nature (London) 281: 378.

    Article  Google Scholar 

  37. Le Douarin, N. M., Teillet, M. A., Ziller, C., and Smith, J., 1978, Adrenergic differentiation of the cholinergic ciliary and Remak ganglia in avian embryo after in vivo transplantation, Proc. Natl. Acad. Sci. U.S.A. 75: 2030.

    Article  Google Scholar 

  38. McCarthy, K. D., and Partlow, L., 1976, Preparation of pure neuronal and non-neuronal cultures from embryonic chick sympathetic ganglia: A new method based on both differential cell adhesiveness and the formation of homotypic neuronal aggregates, Brain Res. 114: 391.

    Article  Google Scholar 

  39. Barald, K. F., and Berg, D. K., 1978, High affinity choline uptake by spinal cord neurons in dissociated cell culture, Dev. Biol. 65: 90.

    Article  Google Scholar 

  40. Tsu, T. T., and Herzenberg, L. A., 1980, Solid phase radioimmune assays, in: Selected Methods in Cellular Immunology ( B. B. Mishell and S. M. Shiigi, eds.), pp. 373–397, W. H. Freeman, San Francisco.

    Google Scholar 

  41. Stocker, J. W., and Heusser, C. H., 1979, Methods for binding cells to plastic: Application to a solid-phase radioimmunoassay for cell-surface antigens, J. Immunol. Methods 26: 87.

    Article  Google Scholar 

  42. Mather, E. L., 1980, Double antibody radioimmunoassay for the quantitation of cellular proteins, in: Selected Methods in Cellular Immunology ( B. B. Mishell and S. M. Shiigi, eds.), pp. 307–324, W. H. Freeman, San Francisco.

    Google Scholar 

  43. Godding, J. W., 1978, Use of staphylococcal protein A as an immunological reagent, J. Immunol. Methods 20: 241.

    Article  Google Scholar 

  44. Heggeness, M. H., and Ash, J. F., 1977, Use of the avidin-biotin complex for the localization of actin and myosin with fluorescence microscopy, J. Cell. Biol. 73: 783.

    Article  Google Scholar 

  45. Cuello, A. C., Galfre, G., and Milstein, C., 1979, Detection of substance P in the central nervous system by a monoclonal antibody, Proc. Natl. Acad. Sci. U.S.A. 76: 3532.

    Article  Google Scholar 

  46. Chan-Palay, V., 1979, Immunocytochemical detection of substance P-neurons, their processes and connections by in vivo microinjections of monoclonal antibodies, Anat. Embryol. 156: 225.

    Article  Google Scholar 

  47. Howard, J. C., Butcher, G. W., Licence, D. R., Galfre, G., Wright, B. and Milstein, C., 1980, Isolation of six monoclonal antibodies against rat histocompatibility antigens: clonal competition, Immunology 41: 131.

    Google Scholar 

  48. Howard, J. C., Butcher, G. W., Galfre, G., Milstein, C., and Milstein, C. P., 1979, Monoclonal antibodies as tools to analyze the serological and genetic complexities of major transplantation antigens, Immunol. Rev. 47: 139.

    Article  Google Scholar 

  49. Cohen, A. M., and Konigsberg, I. R., 1975, A clonal approach to the problem of neural crest determination, Dev. Biol. 46: 262.

    Article  Google Scholar 

  50. Le Douarin, N. M., 1977, The differentiation of the ganglioblasts of the autonomic nervous system studied in chimaeric avian embryos, in: Cell Interactions in Differentiation ( M. Karkinen-Jaaskelainen, L. Saxen, and L. Weiss, eds.), pp. 171–190, Academic Press, London.

    Google Scholar 

  51. Le Douarin, N. M., 1980, The ontogeny of the neural crest in avian embryo chimaeras. Nature (London) 286: 663.

    Article  Google Scholar 

  52. Smith, J., Fauquet, M., Ziller, C., and Le Douarin, N. M., 1979, Acetylcholine synthesis by mesencephalic neural crest cells in the process of migration in vivo, Nature (London) 282: 853.

    Article  Google Scholar 

  53. Rothman, T. P., Gershon, M. D., and Holtzer, H., 1978, The relationship of cell division to the acquisition of adrenergic characteristics by developing sympathetic ganglion cell precursors, Dev. Biol. 65: 322.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Plenum Press, New York

About this chapter

Cite this chapter

Barald, K.F. (1982). Monoclonal Antibodies to Embryonic Neurons. In: Spitzer, N.C. (eds) Neuronal Development. Current Topics in Neurobiology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-1131-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-1131-7_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-1133-1

  • Online ISBN: 978-1-4684-1131-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics