Skip to main content

Lattice Gas Automata: A New Approach to the Simulation of Complex Flows

  • Chapter
Microscopic Simulations of Complex Flows

Part of the book series: NATO ASI Series ((NSSB,volume 236))

Abstract

Turbulence is a complicated phenomenon which has remained one of the last mysteries of classical physics. This quotation from a 1969 paper by Elliott Montroll [1] has kept a substantial part of its truth: twenty years later -and one century after Osborne Reynolds established his famous dynamical similarity law (1883)- the mystery of turbulence is still far from being fully unveiled. Yet, over the past two decades, theoreticians and experimentalists, physicists and mathematicians, have accomplished considerable progress towards the luiderstanding of complex flow phenomena. This achievement relies to a large extent on the formidable development of modern computational tools [2]. In particular very interesting perspectives have appeared since 1985 for highly parallel computation in fluid dynamics, based on a thoroughly new method: lattice gas hydrodynamics. Two laboratories in France (l’Observatoire de l’Université de Nice, and ‘‘Ecole Normale supérieure de Paris) and one in the United States (the Center for Nonlinear Studies at Los Alamos) have pioneered this research, which has attracted the interest and the collaborative efforts of several groups in the U.S. and in Europe (Shell Research Laboratorium Amsterdam, le Groupe de Physique Non-linéaire de Bruxelles, Politecnica Madrid, le Centre de Recherches en Combustion de Marseille, IBM Research Rome, etc...). The development of lattice gas hydrod3mLamics has been technically connected to cellular automata but, as it has been pointed out [3], lattice gases should not be referred to as cellular automata. In many respects, lattice gases have become a field per se with strong interfaces with kinetic theory, algorithmics, computer and supercomputer simulations, and dedicated macfdne development. Many of these aspects are presented and discussed in two recent volumes devoted to the subject [4,5]. In the present paper we shall restrict ourselves to a review of lattice gas automata and illustrative examples of their application to fluid dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E.W. Montroll, Contemporary Physics, 1, 273 (1969).

    Google Scholar 

  2. See e.g. the special issue of La Recherche : ‘‘Les nouveaux ordinateur” (November, 1988).

    Google Scholar 

  3. M. Hénon, ‘‘On the Relation between Lattice Gases and Cellular Automata”, in Reference [5].

    Google Scholar 

  4. Complex Systems (August, 1987); for a review see also J.P. Boon and A. Noullez “Lattice Gas Hydrodynamics” in Modern Approaches to Turbulence Modeling, edited by D. Olivari and P. Bergé, (AGARD, Paris, 1987).

    Google Scholar 

  5. Kinetic Theory, Lattice Gases, and Foundation of Hydrodynamics edited by R. Monaco, (World Scientific, 1989).

    Google Scholar 

  6. J.P. Boon and S. Yip, Molecular Hydrodynamics (Mc Graw Hill, New York, 1980); P. Résibois and M. DeLeener, Classical Kinetic Theory of Fluids (Wiley, New York, 1977).

    Google Scholar 

  7. J.P. Hansen and I.R. Mc Donald, Theory of Simple Liquids (Academic Press, London, 1976).

    Google Scholar 

  8. M. Mareschal and J.P. Ryckaert, Physicalia, 10,184 (1988).

    Google Scholar 

  9. C. Trozzi and G. Cicotti, Phys. Rev. A29, 916 (1984)

    ADS  Google Scholar 

  10. D.C. Rapaport and E. dementi, Phys. Rev. Lett. 57, 695 (1986)

    Article  ADS  Google Scholar 

  11. M. Mareschal and E. Kestemont, Nature 329, 427 (1987).

    Article  ADS  Google Scholar 

  12. S. Wolfram, Theory and Applications of Cellular Automata (World Scientific, Singapore, 1986).

    MATH  Google Scholar 

  13. J. Hardy, O. de Pazzis, and Y. Pomeau, Phys. Rev. A13, 1949 (1976).

    Google Scholar 

  14. N. Margolus, T. Toffoli, and G. Vichniac, Phys. Rev. Lett. 56, 1694 (1986).

    Article  ADS  Google Scholar 

  15. U. Frisch, B. Hasslacher, and Y. Pomeau, Phys. Rev. Lett. 56, 1505 (1986).

    Article  ADS  Google Scholar 

  16. D. d’Himières, P. Lallemand, and U. Frisch, Europhys. Lett. 2, 291 (1986).

    Article  ADS  Google Scholar 

  17. U. Frisch, D. d’Humières, B. Hasslacher, P. Lallemand, Y. Pomeau, and J.P. Rivet, Complex Systems, 1, 648 (1987).

    Google Scholar 

  18. S. Wolfram, J. Stat. Phys. 45, 471 (1986).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. see e.g. D. d’Humières, P. Lallemand, J.P. Boon, D. Dab and A. Noullez, “Fluid Dynamics with Lattice Gases”, in Chaos and Complexity (World Scientific, 1988).

    Google Scholar 

  20. D. d’Hxunières, P. Lallemand, and J. Searby, Complex Systems, 1, 632 (1987).

    Google Scholar 

  21. V. Zehnlé and J. Searby, “Lattice Gas Experiments on a Non-exothermic Diffusion Flame in a Vortex Field”, to appear in J, Physique.

    Google Scholar 

  22. M. Hénon, “Optimization of Collision Rules in the FCHC Lattice Gas”, in Reference [5].

    Google Scholar 

  23. d’Hxmaières, P. Lallemand, and T. Shimomura, Los Alamos Report LAUR 854051 (1985).

    Google Scholar 

  24. J.P. Rivet, and U. Frisch, C.R. Acad. Sci. Paris, 302, 11 (1986).

    Google Scholar 

  25. U. Frisch and J.P. Rivet, C.R. Acad. Sci. Paris, 303, 1065 (1986)

    MathSciNet  ADS  Google Scholar 

  26. J.P. Rivet, Complex Systems, 1, 838 (1987).

    Google Scholar 

  27. D. d’Humières and P. Lallemand, Physica 140A, 337 (1986).

    Google Scholar 

  28. J.P. Boon and A. Noullez, “Lattice Gas Diffusion and Long Time Correla­tions”, “Long Time Correlations in Lattice Gases”, preprint 1989

    Google Scholar 

  29. D. Frenkel and M.H. Ernst, “Simulation of Diffusion in a 2-D Lattice Gas Cellular Au­tomaton : a Test of Mode-Coupling Theory”, preprint 1989

    Google Scholar 

  30. D. d’Humières and P. Lallemand, C.R. Acad. Sci. Paris, 302, 983(1986).

    Google Scholar 

  31. D. d’Humières, Y. Pomeau, and P. Lallemand, C.R. Acad. Sci. Paris, 301, 1391 (1985).

    Google Scholar 

  32. J.B. Salem and S. Wolfram, in reference [10], p.362.

    Google Scholar 

  33. P. Clavin, D. d’Humières, P. Lallemand and Y. Pomeau, C.R. Acad. Sci. Paris, 303, 1169 (1986)

    Google Scholar 

  34. d’Humières, P. Lallemand, and G. Searby, Complex Systems, 1, 632 (1987)

    Google Scholar 

  35. P. Clavin, P. Lallemand, Y. Pomeau, and G. Searby, J. Fluid Mech. (1987).

    Google Scholar 

  36. P. Lavallée, J.P. Boon, and A. Noullez, “Boimdary Interactions in a Lattice Gas”, in Reference [5].

    Google Scholar 

  37. M. Bonetti, A. Noullez, and J.P. Boon, “Lattice Gas Simulation of 2D Viscous Fingering”, in Reference [5].

    Google Scholar 

  38. P.C. Rem and J. Somers, “Cellular Automata on a Transputer Network”, in Reference [5].

    Google Scholar 

  39. J.P. Rivet, M. Hénon, U. Frisch, and D. d’Humières, Europhys. Lett. 7, 231 (1988).

    Article  ADS  Google Scholar 

  40. T. Toffoli, Physica 100, 195 (1984).

    MathSciNet  Google Scholar 

  41. A. Clouqueur and D. d’Humières, Complex Systems, 1, 584 (1987).

    Google Scholar 

  42. D. Dab and J.P. Boon, “Cellular Automat Approach to Reaction Diffusion Systems”, in “Cellular Automata and the Physics of Complex Systems”, ed. P. Manneville (Springer Verlag, Berlin), 1, (1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Plenum Press, New York

About this chapter

Cite this chapter

Boon, J.P. (1990). Lattice Gas Automata: A New Approach to the Simulation of Complex Flows. In: Mareschal, M. (eds) Microscopic Simulations of Complex Flows. NATO ASI Series, vol 236. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-1339-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-1339-7_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-1341-0

  • Online ISBN: 978-1-4684-1339-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics