Skip to main content

Determination of the Parameters of the Pinch-Discharge Plasma

  • Chapter
Physical Processes in Lasers

Part of the book series: The Lebedev Physics Institute Series ((LPIS,volume 56))

  • 100 Accesses

Abstract

In order to fully understand the processes described in the preceding chapter one must have very detailed information on the temporal and spatial variations of the parameters of the discharge plasma. The times characterizing the development of the processes involved in pinch are on the order of 10-8 to 10-7 sec. To perform measurements with a commensurate resolution poses a very complex experimental problem. In addition to the experimental problems there are fundamental difficulties associated with the impracticality of many of the methods based on the presumed existence of thermodynamic equilibrium. The occurrence of strong deviations from thermodynamic equilibrium in a pinch-discharge plasma is already indicated by the mere observation of induced emission. The use of any method in this case requires special substantiation. This requirement is especially true of spectral techniques for determining the electron temperature. Spectral methods, however, permit a reliable determination of other parameters of the plasma (the ion temperature and ion and electron densities) without imposing stringent demands for the presence of thermodynamic equilibrium. An exceedingly important aspect of spectral methods is that they do not introduce perturbations into the investigated medium. Measurements of the electron temperature according to the plasma conductivity are the most reliable at high degrees of ionization. We now discuss the applicability of various plasma diagnostic methods under our experimental conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  1. S. G. Kulagin, V. M. Likhachev, E. V. Markuzon, et al., ZhÉTF Pis. Red., 3: 12 (1966).

    ADS  Google Scholar 

  2. V. M. Likhachev, M. S. Rabinovich, and V. M. Sutovskii, Eighth Internai. Conf. Ionized Phenomena in Gases (1967), p. 259.

    Google Scholar 

  3. J. S. Hitt and W. T. Haswell, IEEE J. Quantum Electronics, QE-2(4): 6C–4 (1966).

    Google Scholar 

  4. Yu. V. Tkach, Ya. B. Fainberg, L. I. Bolotin, et al., ZhÉTF Pis. Red., 6: 956 (1967).

    ADS  Google Scholar 

  5. D. E. McCumber and D. E. Platzman, Phys. Fluids, 6: 1446 (1963).

    Article  ADS  Google Scholar 

  6. W. E. Bell, Appl. Phys. Lett., 4: 34 (1964).

    Article  ADS  Google Scholar 

  7. A. L. Bloom, W. E. Bell, and D. L. Hardwick, Bull. Am. Phys. Soc., 9: 143 (1964).

    Google Scholar 

  8. M. Armand and P. Martinot-Lagarde, Compt. Rend., 258: 867 (1964).

    Google Scholar 

  9. W. B. Bridges, Appl. Phys. Lett., 4: 128 (1964).

    Article  ADS  Google Scholar 

  10. W. R. Bennett, Jr., J. M. Knutson, G. N. Mercer, and J. L. Detch, Appl. Phys. Lett., 4: 180 (1964).

    ADS  Google Scholar 

  11. G. Convert, M. Armand, and P. Martinot-Lagarde, Compt. Rend., 258: 4467 (1964).

    Google Scholar 

  12. W. E. Bell, Appl. Phys. Lett., 7: 190 (1965).

    Article  ADS  Google Scholar 

  13. G. R. Fowles and W. T. Silfvast, IEEE J. Quantum Electronics, QE-1:131 (1965); W. T. Silfvast, G. R. Fowles, and M. P. Hopkins, Appl. Phys. Lett., 8: 318 (1966).

    Article  ADS  Google Scholar 

  14. W. B. Bridges and A. N. Chester, IEEE J. Quantum Electronics, QE-1: 66 (1965).

    Google Scholar 

  15. A. L. Bloom, Proc. IEEE, 54 (10): 1262 (1966).

    Article  Google Scholar 

  16. W. R. Bennett, Jr., Appl. Optics, Suppl. Chemical Lasers, No. 3 (1965).

    Google Scholar 

  17. W. R. Bennett, Jr., P. J. Kindlman, G. N. Mercer, and J. Sunderland, Appl. Phys. Lett., 5: 158 (1964).

    Article  Google Scholar 

  18. J. Bakos, J. Strigetti, and L. Varga, Phys. Lett., 20: 503 (1966).

    Article  ADS  Google Scholar 

  19. H. N. Olsen, J. Quant. Spectrosc. Radiative Transfer, 3: 59 (1963).

    Article  ADS  Google Scholar 

  20. F. A. Horrigan, S. H. Koozekanani, and R. A. Paananen, Appl. Phys. Lett., 6: 41 (1965).

    Article  ADS  Google Scholar 

  21. H. Statz, F. A. Horrigan, S. H. Koozekanani, C. L. Tang, and G. F. Koster, J. Appl. Phys., 36: 2278 (1965).

    Article  ADS  Google Scholar 

  22. H. Statz, F. A. Horrigan, S. H. Koozekanani, C. L. Tang, and G. F. Koster, Proc. Conf. Physics of Quantum Electronics, Puerto Rico, McGraw-Hill, New York (1965), p. 674.

    Google Scholar 

  23. R. I. Rudko and C. L. Tang, Appl. Phys. Lett., 9: 41 (1966).

    Article  ADS  Google Scholar 

  24. H. Marantz, R. I. Rudko, and C. L. Tang, Appl. Phys. Lett., 9: 409 (1966).

    Article  ADS  Google Scholar 

  25. S. H. Koozekanani, IEEE J. Quantum Electronics, QE-2: 770 (1966).

    Google Scholar 

  26. I. L. Bergman, L. A. Vainshtein, P. L. Rubin, and N. N. Sobolev, ZhÉTF Pis. Red., 6: 919 (1967).

    ADS  Google Scholar 

  27. R. I. Rudko and C. L. Tang, J. Appl. Phys., 38: 4731 (1967).

    Article  ADS  Google Scholar 

  28. W. R. Bennett, Jr., G. N. Mercer, P. J. Kindlman, P. Wexler, and B. Hyman, Phys. Rev. Lett., 17: 987 (1966).

    ADS  Google Scholar 

  29. M. Hammer and C. P. Wen, J. Chem. Phys., 46: 1225 (1967).

    Article  ADS  Google Scholar 

  30. R. K. Sundi, Sixth Conf. Ionized Phenomena in Gases, Paris (1963), p. 29.

    Google Scholar 

  31. S. G. Kulagin, V. M. Likhachev, M. S. Rabinovich, and V. M. Sutovskii, Zh. Prikl. Spektrosk., 5: 534 (1966).

    Google Scholar 

  32. V. M. Likhachev, M. S. Rabinovich, and V. M. Sutovskii, ZhETF Pis. Red., 5: 55 (1967).

    ADS  Google Scholar 

  33. E. T. Gerry, Appl. Phys. Lett., 7: 6 (1965).

    Article  ADS  Google Scholar 

  34. J. D. Shipman, Appl. Phys. Lett., 10: 3 (1967).

    Article  ADS  Google Scholar 

  35. J. D. Shipman and A. C. Kolb, IEEE J. Quantum Electronics, QE-2: 298 (1966).

    Google Scholar 

  36. A. Javan, Phys. Rev. Lett., 3: 87 (1959).

    Article  ADS  Google Scholar 

  37. V. A. Fabrikant, Doctoral Dissertation, FIAN SSSR (1940).

    Google Scholar 

  38. J. H. Sanders, Phys. Rev. Lett., 3: 86 (1959).

    Article  ADS  Google Scholar 

  39. N. G. Basov and A. N. Oraevskii, Zh. Eksp. Teor. Fiz., 44: 1742 (1963).

    Google Scholar 

  40. L. I. Gudzenko and L. A. Shelepin, Zh. Eksp. Teor. Fiz., 45: 1445 (1963).

    Google Scholar 

  41. W. E. Lamb, Jr., and M. Skinner, Phys. Rev., 78: 529 (1950).

    Article  ADS  Google Scholar 

  42. W. R. Bennett, Jr., Ann. Phys., 18: 367 (1962).

    Article  ADS  Google Scholar 

  43. J. M. Hammer and C. P. Wen, Appl. Phys. Lett., 7: 159 (1965).

    Article  ADS  Google Scholar 

  44. E. I. Gordon, E. F. Labuda, and W. B. Bridges, Appl. Phys. Lett., 4: 178 (1964).

    Article  ADS  Google Scholar 

  45. S. Kobayashi, T. Izawa, K. Kawamura, and M. Kamiyama, IEEE J. Quantum Electronics, QE-2: 699 (1966).

    Google Scholar 

  46. R. K. Leonov, E. D. Protsenko, and Yu. M. Sapunov, Opt. i Spektrosk., 21: 243 (1966).

    ADS  Google Scholar 

  47. J. A. Bellisio, C. Fred, and H. A. Haus, Appl. Phys. Lett., 4: 5 (1964).

    Article  ADS  Google Scholar 

  48. L. J. Prescott and A. van der Ziel, Appl. Phys. Lett., 5: 48 (1964).

    Article  ADS  Google Scholar 

  49. W. H. Bennett, Phys. Rev., 45: 890 (1934).

    Article  ADS  Google Scholar 

  50. S. I. Braginskii and G. I. Budker, in: Plasma Physics and Controlled Thermonuclear Reactions [in Russian], Vol. 1 (1958), p. 186.

    Google Scholar 

  51. S. I. Braginskii and A. Migdal, in: Plasma Physics and Controlled Thermonuclear Reactions [in Russian], Vol. 2 (1958), p. 20.

    Google Scholar 

  52. S. M. Osovets, in: Plasma Physics and Controlled Thermonuclear Reactions [in Russian], Vol. 3 (1958), p. 165.

    Google Scholar 

  53. M. A. Leontovich and S. M. Osovets, Atomnaya Energiya, 3: 81 (1956).

    Google Scholar 

  54. L. A. Artsimovich, Controlled Thermonuclear Reactions [in Russian], Moscow (1961).

    Google Scholar 

  55. J. Hasted, Physics of Atom Collisions, Butterworths, London (1964).

    Google Scholar 

  56. G. Francis, Ionization Phenomena in Gases, Academic Press, New York (1960).

    MATH  Google Scholar 

  57. C. L. Longmire, Elementary Plasma Theory, Interscience, New York (1963).

    Google Scholar 

  58. M. N. Rosenbluth et al., Los Alamos Rep. LA-1850 (1954).

    Google Scholar 

  59. A. M. Andrianov, O. A. Bazilevskaya, and Yu. G. Prokhorov, in: Plasma Physics and Controlled Thermonuclear Reactions [in Russian], Vol. 2 (1958), p. 185.

    Google Scholar 

  60. S. I. Braginskii, I. M. Gelfand, and R. P. Fedorenko, in: Plasma Physics and Controlled Thermonuclear Reactions [in Russian], Vol. 4 (1958), p. 201.

    Google Scholar 

  61. V. F. D’yachenko and V. S. Imshennik, in: Problems of Plasma Theory [in Russian], Vol. 5, Atomizdat (1967), p. 394.

    Google Scholar 

  62. J. E. Allen, in: Controlled Thermonuclear Reactions [Russian translation], Atomizdat (1960), p. 37.

    Google Scholar 

  63. J. D. Jukes, J. Fluid Mech., 3: 275 (1957).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  64. Yu. K. Zemtsov, V. D. Pis’mennyi, and I. M. Podgornyi, Dokl. Akad. Nauk SSSR, 155: 312 (1964).

    Google Scholar 

  65. V. D. Pistmennyi, Candidate’s Dissertation, MGU, Moscow (1965).

    Google Scholar 

  66. A. M. Andrianov, O. A. Bazilevskaya, and Yu. G. Prokhorov, in: Plasma Physics and Controlled Thermonuclear Reactions [in Russian], Vol. 3 (1958), p. 182.

    Google Scholar 

  67. L. A. Artsimovich et gl., Atomnaya Energiya, 3: 84 (1956).

    Google Scholar 

  68. V. M. Sutovskii, Candidate’s Dissertation, FIAN SSSR, Moscow (1968).

    Google Scholar 

  69. G. G. Timofeeva and V. L. Granovskii, Zh. Eksp. Teor. Fiz., 30: 477 (1956).

    Google Scholar 

  70. P. K. Cheo and H. G. Cooper, Appl. Phys. Lett., 6: 177 (1965).

    Article  ADS  Google Scholar 

  71. V. N. Kolesnikov, in: Proceedings of the P. N. Lebedev Physics Institute, Vol. 30: Physical Optics, Consultants Bureau, New York (1966), p. 53.

    Google Scholar 

  72. H. Griem, Plasma Spectroscopy, New York (1964).

    Google Scholar 

  73. V. I. Kogan, in: Plasma Physics and Controlled Thermonuclear Reactions [in Russian], Vol. 4 (1958), p. 258.

    Google Scholar 

  74. A. N. Vasil’eva, V. M. Likhachev, and V. M. Sutovskii, Zh. Tekh. Fiz., 39: 341 (1969).

    Google Scholar 

  75. V. F. Kitaeva et al., Dokl. Akad. Nauk SSSR, 172: 317 (1967).

    Google Scholar 

  76. V. N. Tsytovich, Zh. Éksp. Teor. Fiz., 51: 1385 (1966).

    Google Scholar 

  77. D. E. T. F. Ashby et al., J. Appl. Phys., 36: 29 (1965).

    Article  ADS  Google Scholar 

  78. G. Sklizkov, Candidate’s Dissertation, F IAN SSSR (1967).

    Google Scholar 

  79. W. H. McMahan and J. P. Bowen, IEEE J. Quantum Electronics, QE-2: 567 (1966).

    Google Scholar 

  80. G. M. Malyshev, Zh. Tekh. Fiz., 35: 2122 (1965).

    Google Scholar 

  81. F. Rostax, J. Phys., 27: 367 (1966).

    Article  Google Scholar 

  82. J. P. Dougherty and D. T. Farley, Proc. Roy. Soc., A259: 79 (1960).

    Article  ADS  MATH  Google Scholar 

  83. E. E. Salpeter, Phys. Rev., 120: 1528 (1960).

    Article  MathSciNet  ADS  Google Scholar 

  84. J. A. Fejer, Canad. J. Phys., 39: 716 (1961).

    Article  ADS  Google Scholar 

  85. G. Herziger and S. Schmidt, Phys. Verhandl., 18 (1): 1 (1967).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1973 Consultants Bureau, New York

About this chapter

Cite this chapter

Skobel’tsyn, A.D.V. (1973). Determination of the Parameters of the Pinch-Discharge Plasma. In: Skobel’tsyn, A.D.V. (eds) Physical Processes in Lasers. The Lebedev Physics Institute Series, vol 56. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-1602-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-1602-2_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-1604-6

  • Online ISBN: 978-1-4684-1602-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics