Skip to main content

The Use of Membrane Diffusion as a Tool for Separating and Characterizing Naturally Occurring Polymers

  • Chapter
Membrane Science and Technology

Abstract

The principle of a sieve for grading or separating very large particles from smaller ones seems too simple and obvious a procedure to merit discussion before a scientific audience. In contrast, however, when an attempt is made to sieve very small particles — those in the dimension range of relatively small molecules — an overall problem is presented which is well worth discussing before even the most sophisticated audience, because it touches on so many phenomena rather poorly understood yet so important to membrane technology and biochemistry. Perhaps a good way to begin a discussion of the sieving potential of membranes will be to consider some of the reasons a sieving process becomes so complicated with very small particles of molecular dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. C. Craig, T. P. King, and A. Stracher, J Am. Chem. Soc., 79, 3729 (1957).

    Article  CAS  Google Scholar 

  2. L. C. Craig and Wm. Konigsberg, J. Phys. Chem., 65, 166 (1961).

    Article  CAS  Google Scholar 

  3. L. C. Craig, “Advances in Analytical Chemistry and Instrumentation”, Vol. 4, C. N. Reilley, ed., Interscience Publishers, New York New York, 1965, p 35.

    Google Scholar 

  4. W. J. Ferry, J. Gen. Physiol., 20, 95 (1936).

    Article  PubMed  CAS  Google Scholar 

  5. A. J. Staverman, Trans. Faraday Soc., 48, 176 (1948).

    Article  Google Scholar 

  6. J. W. McBain and R. F. Stucwer, J. Phys. Chem., 40, 1157 (1936).

    Article  CAS  Google Scholar 

  7. L. C. Craig and A. O. Pulley, Biochemistry, 1, 89 (1962).

    Article  PubMed  CAS  Google Scholar 

  8. L. C. Craig, “Methods in Enzymology”, Vol. XI, C.H.W. Hirs, ed., Academic Press, New York, 1967, p 870.

    Google Scholar 

  9. L. C. Craig and H. Chen, Anal Chem., 41, 590 (1969).

    Article  CAS  Google Scholar 

  10. L. C. Craig, T. P. King, and Wm. Konigsberg, Ann. N. Y. Acad. Sci., 88, 571 (1960).

    Article  PubMed  CAS  Google Scholar 

  11. L. C. Craig, J. D. Fisher, and T. P. King, Biochemistry, 4, 311 (1965).

    Article  CAS  Google Scholar 

  12. G. Guidotti and L. C. Craig, Proc. Nat. Acad. Sci., 50, 46 (1963).

    Article  PubMed  CAS  Google Scholar 

  13. M. A. Ruttenberg, T. P. King, and L. C. Craig, Biochemistry, 5 2857 (1966).

    Google Scholar 

  14. L. C. Craig, M. Burachik, and J. Chang, to be published.

    Google Scholar 

  15. A. Stern, Wm. A Gibbons, and L. C. Craig, Proc. Nat. Acad. Sci., 61, 734 (1968).

    Article  PubMed  CAS  Google Scholar 

  16. A. Stern and Wm. A. Gibbons, J. Am. Chem. Soc., 91, 2794 (1969).

    Article  PubMed  CAS  Google Scholar 

  17. C. C. Macdonald and W. F. Phillips, J. Am. Chem. Soc., 89, 6332 (1967).

    Article  Google Scholar 

  18. J. Goldstein and L. C. Craig, J. Am. Chem. Soc., 82, 1833 (1960).

    Article  CAS  Google Scholar 

  19. L. C. Craig and W. I. Taylor, unpublished.

    Google Scholar 

  20. L. C. Craig, Science, 144, 1093 (1964).

    Article  PubMed  CAS  Google Scholar 

  21. L. C. Craig and A. Ansevin, Biochemistry, 2, 1268 (1963).

    Article  PubMed  CAS  Google Scholar 

  22. R. Signer, H. Hanni, W. Noestler, W. Rottenberg, and P. von Tavel, Helv. Chim. Acta, 29, 1984 (1946).

    CAS  Google Scholar 

  23. H. A. Saroff and G.H.L. Dillard, Arch. Biochem. Biophysics, 37, 340 (1952).

    Article  CAS  Google Scholar 

  24. B. J. Lipps, R. D. Steward, H. A. Perkins, G. W. Holmes, E. A. McLain, M. R. Rolfs, and P. D. Oja, Trans. Am. Soc. Artif. Int. Organs, XIII, 200 (1967).

    Google Scholar 

  25. For discussions on the various types of hemodialyzers, see recent volumes of the American Society for Artificial Internal Organs.

    Google Scholar 

  26. L. C. Craig and K. Stewart, Biochemistry, 4, 2712 (1965).

    Article  PubMed  CAS  Google Scholar 

  27. L. C. Craig and H. C. Craig Chen, Anal. Chem., 41, 590 (1969).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1970 Plenum Press, New York

About this chapter

Cite this chapter

Craig, L.C. (1970). The Use of Membrane Diffusion as a Tool for Separating and Characterizing Naturally Occurring Polymers. In: Flinn, J.E. (eds) Membrane Science and Technology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-1851-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-1851-4_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-1853-8

  • Online ISBN: 978-1-4684-1851-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics