Skip to main content

Part of the book series: The International Cryogenics Monograph Series ((INCMS))

  • 203 Accesses

Abstract

Although it is not possible to give a detailed account of the variety of equipment used to test the mechanical properties of materials at low temperatures, a brief description is given here of some of the main types of apparatus that have been employed in obtaining the results discussed in the earlier chapters. As noted in section 1.1, the uniaxial tensile test is the technique most widely used for obtaining both fundamental and design data and a large number of different tensile cryostats have been employed for this purpose.1 Apart from the natural preference of most experimentalists to design their own equipment, there is a more fundamental reason for the development of such a variety of cryostat systems. It is, in most cases, desirable to have a machine which is as “stiff” as possible in order to observe the sharp yield and serrated stress-strain curve phenomena which were discussed in section 2.4. To achieve such stiffness, relatively massive pull-rods are needed to transmit the applied stresses, but this requirement contradicts the other basic necessity of any piece of cryogenic equipment, namely the need to minimize the heat leak into the cryogenic fluid. Thus, each design represents a compromise between these factors in addition to the usual optimization of the conflicts between initial costs and running costs, simplicity and versatility, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. D. Timmerhaus (Ed.), Advances in Cryogenic Engineering, Plenum Press, New York.

    Google Scholar 

  2. R. J. Arsenault, “Low Temperature Deformation Techniques,” in H. Herman (Ed.), Advances in Materials Research, Vol. 1 (1967), p. 215.

    Google Scholar 

  3. H. M. Rosenberg, Met. Revs. 3, (12); 357 (1958);

    Google Scholar 

  4. H. M. Rosenberg “The Measurement of Mechanical Properties,” in F. E. Hoar, L. C. Jackson, and N. Kurti (Eds.), Experimental Cryophysics, Butterworths (1961).

    Google Scholar 

  5. F. R. Schwartzberg, in Ref. 1, Vol. 8 (1963), p. 608, and in the Preface to the Cryogenic Materials Data Handbook, ML-TDR-64–280(1964), and later supplements.

    Google Scholar 

  6. O. V. Klajvin, Industrial Lab. 29, 473 (1963).

    Google Scholar 

  7. M. P. Hanson, G. W. Stickley, and H. T. Richards, Am. Soc. Testing Mat., Special Tech. Pub. No. 287 (1960), p. 3.

    Google Scholar 

  8. Yu. E. Andrianov, D. V. Lebedev, and B. M. Ovsyannikov, Industrial Lab. 32, 1077 (1966).

    Google Scholar 

  9. J. F. Watson and J. L. Christian, Mat. Res. Standards 1, 87 (1961).

    Google Scholar 

  10. J. E. Cambell and L. P. Rice, Am. Soc. Testing Mat., STP 287, (1960), p. 158.

    Google Scholar 

  11. R. M. McClintock and K. A. Warren, Mat. Res. Standards 1 (2), 95 (1961).

    Google Scholar 

  12. D. Hull and H. M. Rosenberg, Phil. Mag. 4, 303 (1959).

    Article  Google Scholar 

  13. Z. S. Basinski, in G. K. White (Ed.), Experimental Techniques in Low-Temperature Physics, Oxford Univ. Press (1968), p. 164.

    Google Scholar 

  14. E. T. Wessel, Bull. ASTM 1956 (January), 40.

    Google Scholar 

  15. G. U. Behrsing and L. R. Lucas, Rev. Sci. Instr. 36 (5), 617 (1965).

    Article  Google Scholar 

  16. I. E. Gindin, Ya. D. Starodubov, and G. G. Chechel’nitskii, Industrial Lab. (USSR) 32 (7), 1079 (1966).

    Google Scholar 

  17. R. D. Keys, in Ref. 1, Vol. 7 (1962), p. 455.

    Google Scholar 

  18. J. F. Watson et al., “A Study of the Effects of Nuclear Radiation on High Strength Aerospace Vehicle Materials at the Boiling Point of Hydrogen (-423°F),” ERR-EN-085, General Dynamics/Astronautics (September 1961).

    Google Scholar 

  19. W. Weleff, W. F. Emmons, and H. S. McQueen, in Ref. 1, Vol. 10 (1965), p. 50.

    Google Scholar 

  20. D. W. Chamberlain, “A Cryostat, Accessories, and System for Mechanical Properties Testing at Temperatures down to 4°K,” Application Series SA-4, Instron Corp., 2500 Washington Street, Canton, Mass.

    Google Scholar 

  21. G. Taylor, Metallurgy Dept., Oxford University, private communication.

    Google Scholar 

  22. R. L. McGee, J. E. Cambell, R. L. Carlson, and G. K. Manning, “The Mechanical Properties of Certain Aircraft Structural Metals at Very Low Temperatures,” WADC TR-58–386 (November 1960).

    Google Scholar 

  23. D. Hull and H. M. Rosenberg, Cryogenics 1, 27 (1960).

    Article  Google Scholar 

  24. R. P. Mikesell and R. M. McClintock, Ref. 1, Vol. 7 (1962), p. 509.

    Google Scholar 

  25. R. P. Reed, in Ref. 1, Vol. 7 (1962), p. 448.

    Google Scholar 

  26. R. D. McCammon and H. M. Rosenberg, Proc. Roy. Soc. A242, 203 (1957).

    Google Scholar 

  27. R. J. Favor, D. N. Gideon, H. J. Grover, J. E. Heyes, and G. M. McClure, “Investigation of Fatigue Behavior of Certain Alloys in the Temperature Range from Room Temperature to -423°F,” WADD TR-61–132 (June 1961).

    Google Scholar 

  28. R. D. Keys and F. R. Schwartzberg, Mat. Res. Standards 4, 222 (1964).

    Google Scholar 

  29. A. J. Nachtigall, S. J. Klima, and J. C. Freche, J. Mat. JMLSA, 3 (2), 425 (June 1968); and NASA Tech. Note D-4274 (December 1967).

    Google Scholar 

  30. D. W. Chamberlain in Ref. 1, Vol. 9 (1964), p. 131.

    Google Scholar 

  31. J. L. Christian, “Physical and Mechanical Properties of Pressure Vessel Materials for Application in a Cryogenic Environment,” ASD-TDR-62–258 (March 1962).

    Google Scholar 

  32. T. S. De Sisto, “Automatic Impact Testing to 8°K, WAL-TR-112/93, Watertown Arsenal Laboratory (July 1958).

    Google Scholar 

  33. T. F. Kiefer, R. D. Keys, and F. R. Schwartzberg, in Ref. 1, Vol. 10 (1965), p. 56.

    Google Scholar 

  34. D. T. Eash, in Ref. 1, Vol. 11 (1966), p. 401.

    Google Scholar 

  35. R. P. Reed and V. D. Arp, Cryogenics 9, 362 (1969).

    Article  Google Scholar 

  36. P. T. Chiarito in Ref. 1, Vol. 7 (1962), p. 433.

    Google Scholar 

  37. R. M. McClintock, Rev. Sci. Instr. 30 (8), 715 (1959).

    Article  Google Scholar 

  38. K. A. Warren and R. P. Reed, N. B. S. Monograph 63 (1963).

    Google Scholar 

  39. G. V. Aseff, R. F. Callaway, and A. M. Liebschutz, in Ref. 1, Vol. 8 (1963), p. 624.

    Google Scholar 

  40. J. M. Roberts and N. Brown, Trans. AIME 218, 454 (1960);

    Google Scholar 

  41. J. M. Roberts and N. Brown, Acta Met. 10, 1101 (1962).

    Article  Google Scholar 

  42. R. P. Reed and R. L. Durcholz, in Ref. 1 Vol. 15 (1970), Paper J3.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1971 Plenum Press, New York

About this chapter

Cite this chapter

Wigley, D.A. (1971). Testing Methods and Techniques. In: Mechanical Properties of Materials at Low Temperatures. The International Cryogenics Monograph Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-1887-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-1887-3_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-1889-7

  • Online ISBN: 978-1-4684-1887-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics