Skip to main content

Thermodynamic Properties of Propane: Vapor-Liquid Coexistence Curve

  • Conference paper
Advances in Cryogenic Engineering

Part of the book series: Advances in Cryogenic Engineering ((ACRE,volume 18))

Abstract

A number of correlational studies [1–4] present both vapor-liquid coexistence and superheated vapor thermodynamic properties of propane. The present compilation is part of a general revision of the j-Tables of the American Petroleum Institute Research Project 44 [5] for C1 through C5 alkanes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. H. Sage, J. G. Schaafsma, and W. N. Lacey, Ind. Eng. Chem., 26: 1218 (1934).

    Article  Google Scholar 

  2. N. R. Kuloor, D. M. Newitt, and J. S. Bateman, in: Thermodynamic Functions of Gases, Vol. 2 ( F. Din, editor), Butterworths, London (1956), p. 115.

    Google Scholar 

  3. L. N. Canjar, N. R. Patel, and F. S. Manning, Hydrocarbon Proc., 41 (11): 203 (1962).

    Google Scholar 

  4. C. T. Sciance, C. P. Colver, and C. M. Sliepcevich, Hydrocarbon Proc., 46 (9): 173 (1967).

    Google Scholar 

  5. Selected Values of Properties of Hydrocarbons and Related Compounds,“ API Research Project 44, Thermodynamics Research Center, Texas A M University, College Station, Texas (loose-leaf data sheets) (1971).

    Google Scholar 

  6. R. C. Wilhoit and A. W. Hathaway, “Table of Conversion Factors Based on Accepted Constants As Of 1965,” Report of Investigation, API Research Project 44, Thermodynamics Research Center, Texas A M University, College Station, Texas.

    Google Scholar 

  7. P. Sliwinski, Z. physik. Chem. N.F., 63: 263 (1969).

    Article  Google Scholar 

  8. J. R. Tomlinson, “Liquid Densities of Ethane, Propane, and Ethane-Propane Mixtures,” Gulf Research and Development Co., Pittsburgh, Pa., submitted to Nat. Gas Proc. Assoc.

    Google Scholar 

  9. W. B. Kay and G. M. Rambosek, Ind. Eng. Chem., 45: 221 (1953).

    Article  Google Scholar 

  10. H. P. Clegg and J. S. Rowlinson, Trans. Faraday Soc., 51: 1333 (1955).

    Article  Google Scholar 

  11. B. W. Davis and O. K. Rice, J. Chem. Phys., 47: 5043 (1967).

    Article  Google Scholar 

  12. L. I. Dana, A. C. Jenkins, J. N. Burdick, and R. C. Timm, Refrig. Eng., 12: 387 (1926).

    Google Scholar 

  13. S. Young, Proc. Roy. Irish Acad., 38B (4): 65 (1928).

    Google Scholar 

  14. J. A. Beattie, N. Poffenberger, and C. Hadlock, J. Chem. Phys., 3:96 (1935).

    Google Scholar 

  15. J. D. Kemp and C. J. Egan, J. Am. Chem. Soc., 60: 1521 (1938).

    Article  Google Scholar 

  16. E. R. Gilliland and H. W. Scheeline, Ind. Eng. Chem., 32: 48 (1940).

    Article  Google Scholar 

  17. H. H. Reamer, B. H. Sage, and W. N. Lacey, Ind. Eng. Chem., 41: 482 (1949).

    Article  Google Scholar 

  18. B. J. Cherney, H. Marchman, and R. York, Ind. Eng. Chem., 41: 2653 (1949).

    Article  Google Scholar 

  19. N. L. Helgeson and B. H. Sage, J. Chem. Eng. Data, 12: 47 (1967).

    Article  Google Scholar 

  20. K. Olszewski, Chem. Ber., 27: 3305 (1894).

    Article  Google Scholar 

  21. O. Maass and C. H. Wright, J. Am. Chem. Soc., 43: 1098 (1921).

    Article  Google Scholar 

  22. W. W. Deschner and G. G. Brown, Ind. Eng. Chem., 32: 836 (1940).

    Article  Google Scholar 

  23. A. P. Van der Vet, Congress Mondial du Petrole, Vol. II, Paris, 1937, p. 515.

    Google Scholar 

  24. Technical Committee, National Gasoline Association of America, Ind. Eng. Chem., 34: 1240 (1942).

    Article  Google Scholar 

  25. F. W. Seeman and M. Urban, Erdoel Kohle, Erdgas, Petrochem., 16: 117 (1963).

    Google Scholar 

  26. E. A. Guggenheim, J. Chem. Phys., 13: 253 (1945).

    Article  Google Scholar 

  27. V. F. Yesavage, D. L. Katz, and J. E. Powers, J. Chem. Eng. Data, 14: 197 (1969).

    Article  Google Scholar 

  28. B. H. Sage, H. D. Evans, and W. N. Lacey, Ind. Eng. Chem., 31: 763 (1939).

    Article  Google Scholar 

  29. M. Benedict, G. B. Webb, and L. C. Rubin, J. Chem. Phys., 8: 334 (1940).

    Article  Google Scholar 

  30. C. H. Meyers, J. Res. NBS, 29: 168 (1942).

    Google Scholar 

  31. J. Monet, Compt. Rend. Congr. Ind. Gaz. 79: 347 (1962).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1973 Springer Science+Business Media New York

About this paper

Cite this paper

Das, T.R., Eubank, P.T. (1973). Thermodynamic Properties of Propane: Vapor-Liquid Coexistence Curve. In: Timmerhaus, K.D. (eds) Advances in Cryogenic Engineering. Advances in Cryogenic Engineering, vol 18. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-3111-7_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-3111-7_25

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-3113-1

  • Online ISBN: 978-1-4684-3111-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics