Skip to main content

Radiation Damage in Transition Metal Hexahalo Complexes: The Application of Atomic Collision Dynamics in Hot Atom Chemistry

  • Chapter
Atomic Collisions in Solids

Abstract

In transition metal hexahalo complexes K2[MeX6], the chemical consequences of “hot” atom reactions can be observed in relatively simple systems. The primary recoils, generated by nuclear reactions or implanted as radioactive ions, can be studied by radiochemical methods. The halogen recoils may appear either as free halide *X- or as labeled complex anion [MeX5*X]2-. The hot atom chemistry of these systems can be accounted for in largely solid state physical terms, using computer simulation techniques. In general, excellent agreement between the experimental data and the model calculations can be obtained using reasonable model parameters. This agreement shows that the product distribution in these systems is controlled by atomic collision dynamics and simple reactions of a well-defined number of simple defects.

Operated for the U. S. Atomic Energy Commission by the Union Carbide Corporation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Stöcklin, Chemie heisser Atome, (“Chemische Taschenbücher,” Bd. 6, Verlag Chemie, Weinheim/Bergstr., Germany, 1969);

    Google Scholar 

  2. G. Stöcklin, “Chimie des atomes chauds” (Masson et Cie, Paris, 1972).

    Google Scholar 

  3. R. Bell, K. Rössler, G. Stöcklin, and S. R. Upadhyay, Jülich Report Jül-625-RC (1969).

    Google Scholar 

  4. R. Bell, K. Rössler, G. Stöcklin, and S. R. Upadhyay, J. Inorg. Nucl. Chem. 34, 461 (1972).

    Article  Google Scholar 

  5. R. Bell and G. Stöcklin, Radiochim. Acta 13, 57 (1970).

    Google Scholar 

  6. K. Rössler, J. Otterbach, and G. Stöcklin, J. Phys. Chem. 76, 2499 (1972).

    Article  Google Scholar 

  7. J. Otterbach, Jülich Report Jül–832-RC (1972).

    Google Scholar 

  8. M. T. Robinson, K. Rössler, and I. M. Torrens, J. Chem. Phys. 60, 680 (1974).

    Article  ADS  Google Scholar 

  9. I. M. Torrens and M. T. Robinson, “Radiation Induced Voids in Metals,” edited by J. W. Corbett and L. C. Ianiello (U.S.A.E.C. publication CONF-710601, 1972), 739;

    Google Scholar 

  10. I. M. Torrens and M. T. Robinson, “Interatomic Potentials and Simulation of Lattice Defects,” edited by P. C. Gehlen, J. R. Beeler, Jr., and R. I. Jaffee (Plenum, New York, 1972), 423;

    Chapter  Google Scholar 

  11. M. T. Robinson and I. M. Torrens, Phys. Rev. B 9 (1974), in press.

    Google Scholar 

  12. M. T. Robinson, “Radiation Induced Voids in Metals,” edited by J. W. Corbett and L. C. Ianiello (U.S.A.E.C. publication CONF-710601, 1972), 397.

    Google Scholar 

  13. W. F. Libby, J. Am. Chem. Soc. 69, 2523 (1947).

    Article  Google Scholar 

  14. P. H. Dederichs, C. Lehmann, and H. Wegener, Phys. Stat. Solidi 8, 213 (1965).

    Article  ADS  Google Scholar 

  15. W. J. van Ooij, Thesis, Technische Hogeschool Delft (1971).

    Google Scholar 

  16. W. Herr, K. Heine, and G. B. Schmidt, Z. Naturforsch. 17a, 590 (1962).

    ADS  Google Scholar 

  17. L. Pauling, “The Nature of the Chemical Bond” (Cornell Univ. Press, Ithaca, N. Y., 1960), p. 514.

    Google Scholar 

  18. H. J. Wollenberger, “Vacancies and Interstitials in Metals,” edited by A. Seeger, D. Schumacher, W. Schilling, and J. Diehl (North-Holland Publ. Co., Amsterdam, 1970), p. 215.

    Google Scholar 

  19. G. B. Schmidt and W. Herr, “Chemical Effects of Nuclear Transformations,” (IAEA, Vienna, 1961) Vol. 1, p. 525.

    Google Scholar 

  20. H. Müller and D. Cramer, Radiochim. Acta, 14, 78 (1970).

    Google Scholar 

  21. H. Müller, J. Inorg. Nucl. Chem. 27, 1745 (1965).

    Article  Google Scholar 

  22. W. Herr, Z. Elektrochem. 56, 911 (1952).

    Google Scholar 

  23. G. K. Schweitzer and D. L. Wilhelm, J. Inorg. Nucl. Chem. 3, 1 (1956).

    Article  Google Scholar 

  24. D. J. Apers and A. G. Maddock, Trans. Faraday Soc. 56, 498 (1960).

    Article  Google Scholar 

  25. K. Rossler, to be published.

    Google Scholar 

  26. H. Müller, Naturwissensch. 49, 182 (1962).

    Article  ADS  Google Scholar 

  27. H. Müller, “Chemical Effects of Nuclear Transformations,” (IAEA, Vienna, 1965) Vol. 2, p. 359.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1975 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rössler, K., Robinson, M.T. (1975). Radiation Damage in Transition Metal Hexahalo Complexes: The Application of Atomic Collision Dynamics in Hot Atom Chemistry. In: Datz, S., Appleton, B.R., Moak, C.D. (eds) Atomic Collisions in Solids. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-3117-9_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-3117-9_22

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-3119-3

  • Online ISBN: 978-1-4684-3117-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics