Skip to main content

Part of the book series: NATO Advanced Study Institutes Series ((NSSB,volume 35))

  • 237 Accesses

Abstract

In these lectures I want to discuss the recent developments in dynamic critical phenomena using renormalization group techniques. An attractive feature of this topic is that it brings together ideas from several areas of theoretical physics. We will discuss the renormalization group ideas which have their roots in quantum field theory, the statistical mechanics of phase transformations and the principles of non-equilibrium transport phenomena. I hope to show how these principles can be amalgamated into a single theory describing time dependent processes in systems near second order phase transitions. The theory I will discuss not only leads to a good description of dynamics of phase transitions but has suggested new ideas in treating the frontier problems of turbulence1 and spinodal decomposition. 2

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Forster, D. R. Nelson and M. J. Stephen, Phys. Rev. Lett. 36, 867 (1976) and to be published.

    Article  ADS  Google Scholar 

  2. E. D. Siggia, Phys. Rev. A4, 1730 (1977)

    ADS  Google Scholar 

  3. J. W. Cahn, Act. Met. 9, 795 (1961)

    Article  Google Scholar 

  4. J. W. Cahn, Act. Met. 10, 179 (1962).

    Article  Google Scholar 

  5. J. W. Cahn and J. E. Hilliard, Act. Met. 19, 151 (1971)

    Article  Google Scholar 

  6. J. S. Langer, Ann. Phys. (N.Y.) 54, 258 (1969)

    Article  ADS  Google Scholar 

  7. J. S. Langer, Ann. Phys. (N.Y.) 65, 53 (1971)

    Article  ADS  Google Scholar 

  8. J. S. Langer and M. Baron, Ann. Phys. (N. Y.) 78, 421 (1973)

    Article  ADS  Google Scholar 

  9. J. S. Langer and L. A. Turski, Phys. Rev. A8, 3230 (1973)

    ADS  Google Scholar 

  10. J. S. Langer, M. Bar-on and H. D. MiIler, Phys. Rev. A11, 1417 (1975)

    ADS  Google Scholar 

  11. K. Kawasaki, Prog. Theo. Phys. 57, 410 (1977).

    Article  ADS  Google Scholar 

  12. K. Kawasaki, Prog. Theo. Phys. 57, 826 (1977).

    Article  ADS  Google Scholar 

  13. K. G. Wilson and J. Kogut, Phys. Repts. 12C, 75 (1974).

    Article  ADS  Google Scholar 

  14. M. E. Fisher, Rev. Mod. Phys. 46, 597(1974).

    Google Scholar 

  15. K. G. Wilson, Rev. Mod. Phys. 47, 773 (1975).

    Article  ADS  Google Scholar 

  16. S. Ma, Rev. Mod. Phys. 45, 589 (1973).

    Article  ADS  Google Scholar 

  17. S. Ma, Modern Theory of Critical Phenomena, 1976 (Benjamin, New York).

    Google Scholar 

  18. P. C. Hohenberg and B. I. Halperin, Rev. Mod. Phys., to be published.

    Google Scholar 

  19. L. P. Landau and E. M. Lifshitz, Statistical Physics, 1969 (Pergamon, Oxford).

    Google Scholar 

  20. See, for example, C. Kittel, Quantum Theory of Solids, 1963 (Wiley, New York) for an elementary introduction.

    Google Scholar 

  21. H. E. Stanley, Phys. Rev. 176, 718 (1968).

    Article  ADS  Google Scholar 

  22. H. E. Stanley, Introduction to Phase Transitions and Critical Phenomena (Oxford University Press, New York, 1971).

    Google Scholar 

  23. L P. Kadanoff et al., Rev. Mod. Phys. 39, 615 (1967).

    Article  Google Scholar 

  24. L. P. Kadanoff, Physics (N.Y.) 2, 263 (1966).

    Google Scholar 

  25. B. Widom, J. Chem. Phys. 43, 3989 (1965).

    Article  Google Scholar 

  26. K. G. Wilson, Phys. Rev. B4, 3174 (1971).

    ADS  Google Scholar 

  27. L. P. Kadanoff, Annals of Phys. (N.Y.), to be published. Th. Niemejer and J. M. J. van Leeuwen, in Phase Transitions and Critical Phenomena, edited by C. Domb and M. S. Green (Academie, New York, 1976), Vol. VI.

    Google Scholar 

  28. There are many examples of cross fertalization between different branches of physics via the renormalization group. One particularly interesting example is the recent introduction into quantum field theory of a lattice gauge theory. This theory of strong interactions includes guarks on lattice sites interacting through “strings” which are generalizations of exchange interactions between spins to include gauge invariance. There is hope that this model will lead to an understanding of guark confinement. See K. G. Wilson, Phys. Rev. D10, 2445 (1974).

    ADS  Google Scholar 

  29. L. P. Kadanoff, Rev. Mod. Phys. 49, 267 (1977).

    Article  MathSciNet  ADS  Google Scholar 

  30. The external field conjugate to the order parameter is also a relevant variable. We assume here for simplicity that the external field is fixed at zero.

    Google Scholar 

  31. K. G. Wilson and M. E. Fisher, Phys. Rev. Lett. 28, 240 (1972).

    Article  ADS  Google Scholar 

  32. E. Brézin, J. C. LeGuillou, and J. Zinn-Justin, in Phase Transitions and Critical Phenomena, edited by C. Domb and M. S. Green (Akademie, New York, 1976), Vol. VI.

    Google Scholar 

  33. L. N. Lipatov, Zh. Eksp. Teor. Fiz. Pis’ma Red 25, 116 (1977).

    ADS  Google Scholar 

  34. E. Brézin, J. C. Le Guillou and J. Zinn-Justin, Phys. Rev. D15, 1544, 1558 (1977).

    ADS  Google Scholar 

  35. E. Brézin, private communication.

    Google Scholar 

  36. R. Kubo, in Lectures in Theoretical Physics, Vol. I, chapter 4 (Interscience, 1959).

    Google Scholar 

  37. L. P. Kadanoff and P. C. Martin, Ann. Phys. (N.Y.) 24, 419 (1963).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  38. P. C. Martin, in Many Body Physics, edited by C. De Wilt and R. Balian, 1968 (Gordon and Breach, N. Y.).

    Google Scholar 

  39. R. M. White, Quantum Theory of Magnetism, (McGraw-Hill, New York, 1970)

    Google Scholar 

  40. D. Forster, Hydrodynamic Fluctuations, Broken Symmetry and Correlation Functions, 1975 (W. A. Benjamin Inc. Reading, Mass.).

    Google Scholar 

  41. If our first choice for ψi (1) has a non-zero average <ψi (1)> we then choose as our variable ψi = ψi (1) < ψi (1)> which does have zero average.

    Google Scholar 

  42. We can construct the particle density, momentum density and kinetic energy density from f(x,p) by multiplying by 1, p and p2/2m, respectively, and integrating over p.

    Google Scholar 

  43. To keep things simple I am assuming we have a classical theory where the ψ’s commute. This is not a necessary requirement but its elimination would necessitate additional, but essentially unilluminating, further formal development.

    Google Scholar 

  44. H. Mori, Progr. Theor. Phys. 33, 423 (1965).

    Article  ADS  MATH  Google Scholar 

  45. G. F. Mazenko, Phys. Rev. A9, 360 (1974).

    ADS  Google Scholar 

  46. G. F. Mazenko and S. Yip, in Statistical Mechanics, Pt. B, edited by B. J. Berne (Plenum Press, New York, 1977).

    Google Scholar 

  47. P. Resibois and M. De Leener, Phys. Rev. 152, 305, 318 (1966) and 178, 806, 819 (1969).

    Article  ADS  MATH  Google Scholar 

  48. K. Kawasaki, Ann. Phys. (N. Y.) 61, 1 (1970).

    Article  ADS  Google Scholar 

  49. This result, of course, follows from the projection operator approach due to Mori33. We wish to show here that the projection operators, which can present some mathematical problems when trying to develop approximation schemes (See G. F. Mazenko, Phys. Rev. A7, 209 (1973) for discussion and further references), are not a necessary part of the development.

    ADS  Google Scholar 

  50. We define Xij -1 by (math)

    Google Scholar 

  51. In principle this equation is valid only for t > o. Of course we can change our time origin to to and then it is valid for t > to. We can then let to → -∞. We can then Fourier transform over all times.

    Google Scholar 

  52. This is not the actual long time behavior of the velocity autocorrelation function. There is a strong exponential decay for times of order two to three collision times. However for longer times there is a power law decay given by t-d/2 where d is the dimensionality for long times. This long time behavior is associated with non-linear couplings similar to those we will treat in the next section. See for example Y. Pomeau and P. Resibois, Phys. Rept. 19C, 64 (1975)

    ADS  Google Scholar 

  53. J. R. Dorfman and E. G. D. Cohen, Phys. Rev. Lett. 25, 1257 (1970)

    Article  ADS  Google Scholar 

  54. J. R. Dorfman and E. G. D. Cohen, Phys. Rev. A6, 2247 (1972).

    Google Scholar 

  55. There is a very nice discussion of the Drude model in N. W. Ashcroft and N. D. Mermin, Solid State Physics, 1976 (Holt, Rinehart and Winston, New York).

    Google Scholar 

  56. These ideas are discussed extensively by Forster in ref. 29.

    Google Scholar 

  57. Ma7 has a nice discussion of this point.

    Google Scholar 

  58. H. Mori, Prog. Theo. Phys. 28, 763 (1962).

    Article  ADS  MATH  Google Scholar 

  59. L Van Hove, Phys. Rev. 93, 1374 (1954).

    Article  Google Scholar 

  60. I will, for convenience, usually choose units such that the constant C in the Ornstein-Zemike expression for X(q) (See (2. 23)) can be set equal to 1.

    Google Scholar 

  61. B. I. Halperin and P. C. Hohenberg, Phys. Rev. Lett. 19, 700 (1967)

    Article  ADS  Google Scholar 

  62. B. I. Halperin and P. C. Hohenberg, Phys. Rev. 177, 952 (1969).

    Article  ADS  Google Scholar 

  63. V. J. Minkewicz, M. F. Collins, R. Nathans, and G. Shirane, Phys. Rev. 182, 624 (1969).

    Article  ADS  Google Scholar 

  64. For a list of experimental references see R. Freedman and G. F. Mazenko, Phys. Rev. B13, 4967 (1976).

    ADS  Google Scholar 

  65. J. V. Sengers, in Critical Phenomena, edited by M. S. Green (Academie, New York, 1971)

    Google Scholar 

  66. M. S. Green, J. Chem. Phys. 20, 1281 (1952)

    Article  MathSciNet  ADS  Google Scholar 

  67. M. S. Green, J. Chem. Phys. 22, 398 (1954).

    Article  MathSciNet  ADS  Google Scholar 

  68. R. W. Zwanzig, Phys. Rev. 124, 983 (1961).

    Article  ADS  MATH  Google Scholar 

  69. H. Mori and H. Fujisaka, Prog. Theor. Phys. 49, 764 (1973).

    Article  ADS  Google Scholar 

  70. K. Kawasaki, in Critical Phenomena, edited by M. S. Green (Academic, New York, 1971).

    Google Scholar 

  71. In this case ψ¡ does not satisfy (4.4).

    Google Scholar 

  72. Mi (t) can be identified with with those Fourier compo nents of M¡ (t) less than the cut-off Λ.

    Google Scholar 

  73. S. Ma and G. F. Mazenko, Phys. Rev. Lett. 33, 1383 (1974),

    Article  ADS  Google Scholar 

  74. S. Ma and G. F. Mazenko, Phys. Rev. B11, 4077 (1975).

    ADS  Google Scholar 

  75. B. I. Halperin, P. C. Hohenberg and S. Ma, Phys. Rev. Lett. 29, 1548 (1972),

    Article  ADS  Google Scholar 

  76. B. I. Halperin, P. C. Hohenberg and S. Ma Phys. Rev. B10, 139 (1974)

    ADS  Google Scholar 

  77. B. I. Halperin, P. C. Hohenberg and S. Ma Phys. Rev. B13, 4779 (1976).

    Google Scholar 

  78. See the discussion in ref. 8.

    Google Scholar 

  79. This follows from (4.14) by expressing Jij and Mi(t) in terms of their Fourier transforms, expanding in powers of the wavenumber, and transforming back to coordinate space.

    Google Scholar 

  80. K. Kawasaki, Phys. Rev. 150, 291 (1966), in Statistical Mechanics, edited by S. A. Rice, K. F. Freed, and J. C. Light (University of Chicago, 1972) and refs. 37 and 55.

    Article  MathSciNet  ADS  Google Scholar 

  81. M. Fixman, J. Chem. Phys. 36, 310 (1962)

    Article  ADS  Google Scholar 

  82. L. P. Kadanoff and J. Swift, Phys. Rev. 166, 89 (1968).

    Article  ADS  Google Scholar 

  83. R. A. Ferrell, Phys. Rev. Lett. 24, 1169 (1970).

    Article  ADS  Google Scholar 

  84. R. Zwanzig, in Statistical Mechanics, edited by S. A. Rice, K. F. Freed, and J. C. Light, (University of Chicago Press, Chicago, 1972).

    Google Scholar 

  85. P. C. Martin, E. D. Siggia, and H. A. Rose, Phys. Rev. A8, 423 (1973).

    ADS  Google Scholar 

  86. H. K. Janssen, Z. Physik B23, 377(1976),

    ADS  Google Scholar 

  87. R. Bausch, H. J. Janssen and H. Wagner, Z. Physik, B24, 113 (1976).

    ADS  Google Scholar 

  88. K. Kawasaki, Prog. Theor. Phys. 52, 1527 (1974).

    Article  ADS  Google Scholar 

  89. C. De Dominicis, Nuovo Cimento Lett. 12, 576 (1975)

    Article  Google Scholar 

  90. C. De Dominicis, E. Brezin and J. Zinn-Justin, Phys. Rev. B12, 4945 (1975).

    ADS  Google Scholar 

  91. G. F. Mazenko, M. Nolan and R. Freedman, Phys. Rev. B, to be published, discuss situations where the fluctuation — dissipation theorem may have a slightly different form.

    Google Scholar 

  92. We have already investigated the behavior of u and ro under the RG in the static case. Since we generate exactly the same statics from our equation of motion we would obtain the same recursion relations.

    Google Scholar 

  93. M. J. Nolan and G. F. Mazenko, Phys. Rev. B15, 4471 (1977).

    ADS  Google Scholar 

  94. B. I. Halperin, P. C. Hohenberg, and E. D. Siggia, Phys. Rev. Lett. 32, 1289 (1974)

    Article  ADS  Google Scholar 

  95. B. I. Halperin, P. C. Hohenberg, and E. D. Siggia, Phys. Rev. B13, 1299 (1976).

    ADS  Google Scholar 

  96. P. C. Hohenberg, B. I. Halperin, and E. D. Siggia, Phys. Rev. B14, 2865 (1976)

    ADS  Google Scholar 

  97. E. D. Siggia, Phys. Rev. B11, 4736 (1975).

    ADS  Google Scholar 

  98. B. I. Halperin, P. C. Hohenberg, and E. D. Siggia, Phys. Rev. Lett. 32, 1289 (1974)

    Article  ADS  Google Scholar 

  99. B. I. Halperin, P. C. Hohenberg, and E. D. Siggia, Phys. Rev. B13, 1299 (1976).

    ADS  Google Scholar 

  100. R. Freedman and G. F. Mazenko, Phys. Rev. Lett. 34, 1575 (1975)

    Article  ADS  Google Scholar 

  101. R. Freedman and G. F. Mazenko, Phys. Rev. B13, 4967 (1976).

    ADS  Google Scholar 

  102. Ref. 73 and E. D. Siggia, B. I. Halperin, and P. C. Hohenberg, Phys. Rev. B13, 2110 (1976).

    ADS  Google Scholar 

  103. I. M. Gel’fand and A. M. Yaglom, J. Math. Phys. 1, 18 (1960).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1978 Plenum Press, New York

About this chapter

Cite this chapter

Mazenko, G.F. (1978). Renormalization Group Approach to Dynamic Critical Phenomena. In: Halley, J.W. (eds) Correlation Functions and Quasiparticle Interactions in Condensed Matter. NATO Advanced Study Institutes Series, vol 35. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-3360-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-3360-9_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-3362-3

  • Online ISBN: 978-1-4684-3360-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics