Skip to main content

Part of the book series: NATO Advanced Study Institutes Series ((NSSB,volume 65))

Abstract

While investigating the transport of heat in superfluid He, Kapitza (1941) observed a large temperature difference AT between his copper heater and the liquid helium. He deduced that the entire AT occurred very close to the copper-helium interface. It is permissible therefore to define a thermal boundary resistance RK ≡ AT/Q, where Q is the heat flux per unit area of interface. Rk, now called the Kapitza resistance, has been shown to have a temperature dependence of T-3.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson, A. C., and Rauch, R. B., 1970, Low-Temperature Thermal Conductivity of a Suspension of Copper Particles, J. Appl. Phys., 41:3648.

    Article  ADS  Google Scholar 

  • Anderson, A. C., and Peterson, R. E., 1970, Selection of a Thermal Bonding Agent for Temperature Below 1 K, Cryogenics, 10:430.

    Article  Google Scholar 

  • Anderson, A. C., Salinger, G. L., and Wheatley, J. C., 1961, Transfer of Heat Below 0.15°K, Rev. Sci. Instrum., 32:1110.

    Article  ADS  Google Scholar 

  • Anderson, A. C., and Peterson, R. E., 1972, The Thermal Resistance Between Electrons and Phonons in Copper, Phys. Lett., 38A:519.

    ADS  Google Scholar 

  • Barnes, L. J., and Dillinger, J. R., 1966, Thermal Resistivity at Pb-Cu and Sn-Cu Interfaces between 1.3 and 2.1°K, Phys. Rev., 141:615.

    Article  ADS  Google Scholar 

  • Becker, F. L., and Richardson, R. L., 1970, Ultrasonic Critical Angle Reflectivity, in “Research Techniques in Nondestructive Testing”, R. S. Sharp, ed., Academic, New York, Vol. I, p. 91.

    Google Scholar 

  • Bron, W. E., Patel, J. L., and Schaich, W. L., 1979, Transport of Phonons into Diffusive Media, Phys. Rev. B, 20:5394.

    Article  ADS  Google Scholar 

  • Cheeke, J.D.N. and Martinon, C., 1972, Influence of Surface Defects on High Frequency Phonon Generation, Solid State Commun., 11:1771.

    Article  ADS  Google Scholar 

  • Cheeke, J.D.N., Ettinger, H., and Hebral, B., 1976, Analysis of Heat Transfer Between Solids at Low Temperatures, Can. J. Phys., 54:1749.

    Article  ADS  Google Scholar 

  • Clarke, J., and Hsiang, T., 1976, Low-Frequency Noise in Tin and Lead Films at the Superconducting Transition, Phys. Rev. B, 13:4790.

    Article  ADS  Google Scholar 

  • de Araujo, F.F.T., and Rosenberg, H. M., 1975, The Thermal Boundary Resistance at Epoxy-Resin/Metal Interfaces at Liquid Helium-Temperatures, in “Phonon Scattering in Solids,” L. J. Challis, V. M. Rampton and A.F.G. Wyatt, ed., Plenum, New York, p. 43.

    Google Scholar 

  • Ewing, W. M., Jardetsky, W. S., and Press, F., 1957, “Elastic Waves in Layered Media,” McGraw, New York.

    MATH  Google Scholar 

  • Folinsbee, J. T., and Anderson, A. C., 1973, Anomalous Kapitza Resistance to Solid Helium, Phys. Rev. Lett., 31:1580.

    Article  ADS  Google Scholar 

  • Garrett, K. W., and Rosenberg, H. M., 1974, The Thermal Conductivity of Epoxy-Resin/Powder Composite Materials, J. Phys. D, 7:1247.

    Article  ADS  Google Scholar 

  • Herth, P., and Weis, O., 1970, Radiation Temperature of Thermal Phonon Radiators, Z. Angew. Phys., 29:102.

    Google Scholar 

  • Kapitza, P. L., 1941, The Study of Heat Transfer in Helium II, J. Phys. USSR, 4:181.

    Google Scholar 

  • Kaplan, S. B., 1979, Acoustic Matching of Superconducting Films to Substrates, J. Low Temp. Phys., 37:343.

    Article  ADS  Google Scholar 

  • Katerberg, J. A., Reynolds, C. L., and Anderson, A. C., 1977, Calculations of the Thermal Boundary Resistance, Phys. Rev. B, 16:673.

    Article  ADS  Google Scholar 

  • Kolsky, H., 1953, “Stress Waves in Solids,” Oxford, London.

    MATH  Google Scholar 

  • Levinson, I. B., 1977, Boundary Conditions in Phonon Hydrodynamics, Sov. Phys. JETP, 46:165.

    ADS  Google Scholar 

  • Little, W. A., 1959, The Transport of Heat Between Dissimilar Solids at Low Temperatures, Can. J. Phys., 37:334.

    Article  ADS  Google Scholar 

  • Lumpkin, M. E., Saslow, W. M., and Visscher, W. M., 1978, One-Dimensional Kapitza Conductance: Comparison of the Phonon Mismatch Theory with Computer Experiments, Phys. Rev. B, 17:4295.

    Article  ADS  Google Scholar 

  • Martinon, C., and Weis, O., 1979, α-Quartz as a Substrate in Thermal Phonon Radiation, Z. Phys. B, 32:259.

    Article  ADS  Google Scholar 

  • Matsumoto, D. S., Reynolds, C. L., and Anderson, A. C., 1977, Thermal Boundary Resistance at Metal-Epoxy Interfaces, Phys. Rev. B, 16:3303.

    Article  ADS  Google Scholar 

  • Miedema, A. R., Postma, H., van der Vlugt, N. J., and Steenland, M. J., 1959, Some Experiments on Heat Transfer Below 1°K, Physica, 25:509.

    Article  ADS  Google Scholar 

  • Murmann, H., and Heber, J., 1977, The Phonon Spectrum of High Energy Heat Pulses Generated in Thin Metal Films, Z. Phys. B, 26:137.

    Article  ADS  Google Scholar 

  • Narnhofer, H., Thirring, W., and Sexl, R., 1970, On the Theory of Interfacial Conductivity, Ann. Phys. (N.Y.), 57:350.

    Article  ADS  Google Scholar 

  • Neeper, D. A., and Dillinger, J. R., 1964, Thermal Resistance at Indium-Sapphire Boundaries between 1.1 and 2.1°K, Phys. Rev., 135:A1028.

    Article  ADS  Google Scholar 

  • O’Hara, S. G., and Anderson, A. C., 1974, Thermal Impedance Across Metallic and Superconducting Foils Below 1K, J. Phys. Chem. Solids, 35:1677.

    Article  ADS  Google Scholar 

  • Opsal, J. L., and Pollack, G. L., 1974, Improved Calculations of the Kapitza Resistance: Combined Effects of Phonon Attenuation and Impedance Matching on Kapitza Resistance, Phys. Rev. A, 9:2227.

    Article  ADS  Google Scholar 

  • Park, B. S., and Narahara, Y., 1971, Kapitza Resistance between Dielectrics and Metals in the Normal and Superconducting States, J. Phys. Soc. Jap., 30:760.

    Article  ADS  Google Scholar 

  • Perrin, N., 1978, Determination of the Thermal Boundary Resistance in the Transport Approach, J. Low Temp. Phys., 31:257.

    Article  ADS  Google Scholar 

  • Perrin, N., and Budd, H., 1972, Phonon Generation by Joule Heating in Metal Films, Phys. Rev. Lett., 28:1701.

    Article  ADS  Google Scholar 

  • Peterson, R. E., and Anderson, A. C., 1972, The Transport of Heat Between Solids at Low Temperature, Solid State Commun., 10:891.

    Article  ADS  Google Scholar 

  • Peterson, R. E., and Anderson, A. C., 1973, The Kapitza Thermal Boundary Resistance, J. Low Temp. Phys., 11:639.

    Article  ADS  Google Scholar 

  • Phillips, M. C., and Sheard, F. W., 1976, Path-Integral Formulation of the Theory of Thermal Boundary Resistance, in “Phonon Scattering in Solids,” L. J. Challis, V. W. Rampton and A.F.C. Wyatt, ed., Plenum, New York, p. 24.

    Chapter  Google Scholar 

  • Pollack, G. L., 1969, Kapitza Resistance, Rev. Mod. Phys., 41:48.

    Article  ADS  Google Scholar 

  • Reynolds, C. L., and Anderson, A. C., 1975, Thermal Boundary Resistance to Noncrystalline Dielectrics, J. Low Temp. Phys., 21:641.

    Article  ADS  Google Scholar 

  • Reynolds, C. L., and Anderson, A. C., 1977, Thermal Boundary Resistance to Solid Helium, Hydrogen, Deuterium, and Neon. II, Phys. Rev. B, 15:5466.

    Article  ADS  Google Scholar 

  • Rosch, F., and Weis, O., 1977, Phonon Transmission from Incoherent Radiators into Quartz, Sapphire, Diamond, Silicon and Germanium within Anisotropic Continuum Acoustics, Z. Phys. B, 27:33.

    Article  ADS  Google Scholar 

  • Schmidt, C., 1975, Influence of the Kapitza Resistance on the Thermal Conductivity of Filled Epoxies, Cryogenics, 15:17.

    Article  Google Scholar 

  • Schmidt, C., 1977, Thermal Boundary (Kapitza) Resistance at Niobium-Epoxy Interfaces in the Superconducting and Normal States, Phys. Rev. B, 15:4187.

    Article  ADS  Google Scholar 

  • Schmidt, C., 1974, Thermal Boundary Resistance at Interfaces Between Two Dielectrics, Phys. Lett., 50A:241.

    ADS  Google Scholar 

  • Schmidt, C., and Umlauf, E., 1976, Thermal Boundary Resistance at Interfaces Between Sapphire and Indium, J. Low Temp. Phys., 22:597.

    Article  ADS  Google Scholar 

  • Schumann, B., Netsche, F., and Paasch, G., 1980, Thermal Conductance of Metal Interfaces at Low Temperatures, J. Low Temp. Phys., 38:167.

    Article  ADS  Google Scholar 

  • Sheard, F. W., Bowley, R. M., and Toombs, G. A., 1973, Microscopic Theory of the Kapitza Resistance at a Solid-Liquid 4He Interface, Phys. Rev. A, 8:3135.

    Article  ADS  Google Scholar 

  • Simons, S., 1974, On the Thermal Contact Resistance Between Insulators, J. Phys. C, 7:4048.

    Article  ADS  Google Scholar 

  • Steinbruchei, C., 1976, The Scattering of Phonons of Arbitrary Wavelength at a Solid-Solid Interface: Model Calculation and Applications, Z. Phys. B, 24:293.

    Article  ADS  Google Scholar 

  • Stonely, R., 1924, Elastic Waves at the Surface of Separation of Two Solids, Proc. Roy Soc., A106:416.

    ADS  Google Scholar 

  • Suomi, M., Anderson, A. C., and Holmstrom, B., 1968, Heat Transfer Below 0.2°K, Physica, 38:67.

    Article  ADS  Google Scholar 

  • Taborek, P., and Goodstein, D. L., 1980, The Anomalous Kapitza Conductance is not a Quantum Effect, Bull. Am. Phys. Soc., 25:407.

    Google Scholar 

  • Weis, O., 1969, Thermal Phonon Radiation, Z. Angew, Phys., 26:325.

    Google Scholar 

  • Weis, O., 1979, Reflection, Transmission and Mode Conversion of Plane Sound Waves at a Plane Interface Between Two Different Anisotropic Solids, Z. Phys. B, 34:55.

    Article  ADS  Google Scholar 

  • Wolfmeyer, M. W., Fox, G. T., and Dillinger, J. R., 1970, An Electron Contribution to the Thermal Conduction Across a Metal-Solid Dielectric Interface, Phys. Lett., 31A: 401.

    ADS  Google Scholar 

  • Zelikman, M. A., and Spivak, B. Z., 1979, Role of Slow Relaxation Processes in the Formation of the Kapitza Jump on the Boundary Between a Superconductor and a Dielectric, Sov. Phys. JETP, 49:377.

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Plenum Press, New York

About this chapter

Cite this chapter

Anderson, A.C. (1981). The Kapitza Thermal Boundary Resistance Between Two Solids. In: Gray, K.E. (eds) Nonequilibrium Superconductivity, Phonons, and Kapitza Boundaries. NATO Advanced Study Institutes Series, vol 65. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-3935-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-3935-9_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-3937-3

  • Online ISBN: 978-1-4684-3935-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics