Skip to main content

The Application of Quasi-Elastic Light Scattering to the Study of Muscular Contraction

  • Chapter
The Application of Laser Light Scattering to the Study of Biological Motion

Part of the book series: NATO Advanced Science Institutes Series ((NSSA,volume 59))

Abstract

In these lectures, our primary focus will be on the phenomena of biological contractility and on how photon correlation spectroscopy can be used to study the basic molecular processes from which these phenomena arise. Photon correlation spectroscopy (PCS) permits the measurement of macromolecular diffusional relaxation times ranging from 10−6 to 102 seconds and these measurements can be made with great accuracy on small quantities of material in solutions, in gels, and in intact cells. Much has been learned about the structural dynamics of contractile proteins and organelles from photon correlation and transient electric birefringence (TEB) studies. The internal structural dynamics of contractile cells have also been successfully studied with PCS. However, the condensed state of the contractile proteins within the cell and the complexity of their interactions makes the interpretation of PCS data singularly difficult. PCS studies by themselves are not sufficient to lead to a solution of the problem of muscular contraction. On the other hand, when combined with time resolved X-ray diffraction studies and nuclear magnetic resonance studies, PCS studies can be highly useful in narrowing the field of possible models for the contractile mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. D. Carlson and D. R. Wilkie, “Muscle Physiology,” Prentice Hall, Inc., Englewood Cliffs, NJ (1974).

    Google Scholar 

  2. A. Weber and J. M. Murray, Physiol. Rev. 53: 612 (1973).

    Google Scholar 

  3. J. M. Squire, Ann. Rev. Bioeng. 4: 137 (1975).

    Article  Google Scholar 

  4. H. G. Mannherz and R. S. Goode, Ann. Rev. Biochem. 45: 427 (1976).

    Article  Google Scholar 

  5. R. A. Murphey, Ann. Rev. Physiol. 41: 737 (1979).

    Article  Google Scholar 

  6. S. B. Marston, R. T. Tregear, C. D. Rodger and M. L. Clarke, J. Mol. Biol. 128: 11 (1979).

    Article  Google Scholar 

  7. E. Taylor, CRC Crit. Rev. Biochem. 6: 103 (1979).

    Article  Google Scholar 

  8. A. F. Huxley and R. M. Simmons, Nature (Lond.) 233: 533 (1971).

    Article  ADS  Google Scholar 

  9. H. E. Huxley, Science 164: 1356 (1969).

    Article  ADS  Google Scholar 

  10. A. F. Huxley and R. M. Simmons, C.S.H.S.2.B. 37: 669 (1972).

    Google Scholar 

  11. W. F. Harrington, Proc. Natl. Acad. Sci. U.S.A. 68: 685 (1971).

    Article  ADS  Google Scholar 

  12. F. Oosawa et al., C.S.H.S.2.B. 37: 277 (1972).

    Google Scholar 

  13. Organization of the Cytoplasm“, C.S.H.S.2.B. XLVI (1982).

    Google Scholar 

  14. R. H. Mendelson, in: “Cell and Muscle Motility,” R. Dowben and J. Shea, eds., Plenum Publ. Corp. (1982) pg 257.

    Google Scholar 

  15. S. C. Harvey and H. C. Cheung, in: “Cell and Muscle Motility,” R. Dowben and J. Shea, eds., Plenum Publ. Corp. (1982) pg. 279.

    Book  Google Scholar 

  16. D. D. Thomas et al., Proc. Natl. Acad. Sci. U.S.A. 72: 1729 (1975).

    Article  ADS  Google Scholar 

  17. D. D. Thomas and R. Cooke, Biophys. J. 25: 19a (1979).

    Google Scholar 

  18. D. D. Thomas et al., Biophys J. 32: 873 (1980).

    Article  Google Scholar 

  19. J. Borejdo et al., Proc. Natl. Acad. Sci. U.S.A. 76: 6346 (1979).

    Article  ADS  Google Scholar 

  20. J. Borejdo and S. Putnam, Biochem. Biophys. Acta 459: 578 (1977).

    Article  Google Scholar 

  21. H. E. Huxley and W. Brown, J. Mol. Biol. 30: 383 (1967).

    Article  Google Scholar 

  22. J. C. Hazelgrove and H. E. Huxley, J. Mol. Biol. 77: 549 (1973).

    Article  Google Scholar 

  23. J. C. Hazelgrove et al., Nature (Lond.) 261: 606 (1976).

    Article  ADS  Google Scholar 

  24. R. W. Lymn and G. H. Cohen, Nature (Lond.) 258: 770 (1975).

    Article  ADS  Google Scholar 

  25. H. E. Huxley et al., Proc. Natl. Acad. Sci. U.S.A. 78: 2297 (1981).

    Article  ADS  Google Scholar 

  26. A. Elliott and G. Offer, J. Mol. Biol. 123: 505 (1978).

    Article  Google Scholar 

  27. K. Takahashi, J. Biochem. 83: 905 (1978).

    Google Scholar 

  28. M. Burke et al., Biochem. 12: 701 (1973).

    Article  Google Scholar 

  29. W. F. Harrington, Proc. Natl. Acad. Sci. U.S.A. 76: 5066 (1979).

    Article  ADS  Google Scholar 

  30. J. Newman and H. Swinney, Biopolymers 15: 301 (1976).

    Article  Google Scholar 

  31. F. D. CARLSON

    Google Scholar 

  32. H. Z. Cummins and P. N. Pusey, in: “Photon Correlation Spectroscopy and Velocimetry,” H. Z. Cummins and E.R. Pike, eds., Plenum Publ. Corp. (1977) pg. 164.

    Google Scholar 

  33. Y. Allen and A. Hochberg, Rev. Sci. Inst. 46: 381 (1975).

    ADS  Google Scholar 

  34. C. Montague and F. D. Carlson, in: “Advances in Enzymology,” S. Colowick and N. Kaplan, eds. (in press).

    Google Scholar 

  35. T. J. Racey, R. Hallett, and B. Nickel, Biophys. J. 35: 557 (1981).

    Article  Google Scholar 

  36. C. J. Oliver, Adv. Phys. 27: 387 (1978).

    Article  ADS  Google Scholar 

  37. P. Nieuwenhuysen, Macromolecules 11: 832 (1978).

    Article  ADS  Google Scholar 

  38. J. G. de la Torre and V. A. Bloomfield, Biochem. 19: 5118 (1980).

    Google Scholar 

  39. S. J. Broersma, J. Chem. Phys. 32: 1626 (1960).

    Article  ADS  Google Scholar 

  40. S. J. Broersma, J. Chem. Phys. 32: 1632 (1960).

    Article  ADS  Google Scholar 

  41. J. Newman et al., J. Mol. Biol. 116: 593 (1977).

    Article  Google Scholar 

  42. H. Yamakawa, “Modern Theory of Polymer Solutions,” Harper and Row, NY (1971).

    Google Scholar 

  43. P. J. de Gennes, “Scaling Concepts in Polymer Physics,” Cornell Univ. Press, Ithaca, NY (1979).

    Google Scholar 

  44. W. A. Wegener et al., J. Chem. Phys. 73: 4086 (1980).

    Article  ADS  Google Scholar 

  45. W. A. Wegener, Biopolymers 19: 1899 (1980).

    Article  Google Scholar 

  46. K. Zero and R. Pecora, Macromolecules, (in press).

    Google Scholar 

  47. C. C. Yang and R. Pecora, J. Chem. Phys. 72: 5333 (1980).

    Article  ADS  Google Scholar 

  48. S. Highsmith et al., Biochem. 21: 1192 (1982).

    Article  Google Scholar 

  49. M. Fujiwara et al., Reports on Progress in Polymer Physics in Japan 23: 531 (1980).

    Google Scholar 

  50. A. B. Fraser et al., Biochem. 14: 2207 (1975)

    Article  Google Scholar 

  51. J. T. Yang and C. C. Yoo, Biochem. 16: 578 (1977).

    Google Scholar 

  52. C. Montague, K. W. Rhee, and F. D. Carlson, J. Cell Motility and Muscle Res. (in press).

    Google Scholar 

  53. U. Aebi et al., Nature 288: 296 (1980).

    Article  ADS  Google Scholar 

  54. D. Suck, W. Kabsch, and H. G. Mannherz, Proc. Natl. Acad. Sci. U.S.A. 78: 4319 (1981).

    Article  ADS  Google Scholar 

  55. F. D. Carlson and A. B. Fraser, J. Mol. Biol. 89: 273 (1974)

    Article  Google Scholar 

  56. F. D. Carlson, J. Mol. Biol. 95: 139 (1975).

    Article  Google Scholar 

  57. S. Fujimi, J. Phys. Soc. Japan 29: 751 (1970).

    Article  ADS  Google Scholar 

  58. S. Ishiwata and S. Fujimi, J. Phys. Soc. Japan 31: 1601 (1971).

    Article  ADS  Google Scholar 

  59. S. Fujimi and S. Ishiwata, J. Mol. Biol. 62: 251 (1971).

    Article  Google Scholar 

  60. S. Ishiwata and S. Fujimi, J. Mol. Biol. 68: 511 (1972).

    Article  Google Scholar 

  61. K. Mihashi, Arch. Biochem. Biophys. 107: 441 (1964).

    Article  Google Scholar 

  62. F. Lanni, D. L. Taylor, and B. R. Ware, Biophys. J. 35: 351 (1981).

    Article  Google Scholar 

  63. J. Newman and F.D. Carlson, Biophys. J. 29: 37 (1981).

    Article  Google Scholar 

  64. B. M. Millman and P. M. Bennett, J. Mol. Biol. 103: 439 (1976).

    Article  Google Scholar 

  65. T. Maeda and S. Fujimi, J. Phys. Soc. Japan 42: 1983 (1977).

    Article  ADS  Google Scholar 

  66. T. Maeda and S. Fujimi, Macromolecules 14: 809 (1981).

    Article  ADS  Google Scholar 

  67. A. Wegner, J. Mol. Biol. 131: 839 (1979).

    Article  Google Scholar 

  68. C. Montague, unpublished data.

    Google Scholar 

  69. STUDY OF MUSCULAR CONTRACTION 457

    Google Scholar 

  70. R. W. Rosser et al., Macromolecules 11: 1239 (1978).

    Article  ADS  Google Scholar 

  71. T. J. Herbert and F. D. Carlson, Biopolymers 10: 2231 (1971).

    Article  Google Scholar 

  72. A. D’Albis and W. Gratzer, J. Biochem. 251: 2825 (1976).

    Google Scholar 

  73. S. Lowey et al., J. Mol. Biol. 42: 1 (1969).

    Article  Google Scholar 

  74. J. G. de la Torre and V. A. Bloomfield, Biochem. 19: 5118 (1980).

    Google Scholar 

  75. S. Kobayasi and T. Totsuka, Error! Hyperlink reference not valid . Biophys. Acta 376: 375 (1975).

    Article  Google Scholar 

  76. S. Highsmith et al., Proc. Natl. Acad. Sci. U.S.A. 74: 4986 (1977).

    Article  ADS  Google Scholar 

  77. R. Mendelson et al., Biochem. 12: 2250 (1973).

    Article  Google Scholar 

  78. J. Borejdo and M. F. Morales, Biophys. J. 20: 315 (1977).

    Article  Google Scholar 

  79. F. D. Carlson, Biophys. J. 15: 633 (1975).

    Article  ADS  Google Scholar 

  80. C. G. Dos Remedios et al., J. Gen. Physiol. 59: 103 (1972).

    Article  Google Scholar 

  81. C. G. Dos Remedios et al., Proc. Natl. Acad. Sci. U.S.A. 69: 2542 (1972).

    Article  ADS  Google Scholar 

  82. K. Guth, Biophys. Struct. Mech. 6: 81 (1980).

    Google Scholar 

  83. R. F. Bonner and F. D. Carlson, J. Gen. Physiol. 64:555 (1975). - -

    Google Scholar 

  84. R. C. Haskell and F. D. Carlson, Biophys. J. 33: 39 (1981).

    Article  Google Scholar 

  85. S. Fujimi, in: Proc. NATO Adv. Study Inst. on Scattering Techniques Applied to Supramolecular and Nonequilibrium Systems, S. H. Chen, B. Chu, and R. Nossal, eds., Plenum Press (1981) pg 725.

    Google Scholar 

  86. B. Saleh, “Photoelectron Statistics,” Springer-Verlag, Inc. NY (1978).

    Google Scholar 

  87. A. M. Gordon et al., J. Physiol. (Lond) 184: 170 (1966).

    Google Scholar 

  88. F. D. Carlson, J. Mol. Biol. 95: 139 (1975).

    Article  Google Scholar 

  89. R. C. Haskell and F. D. Carlson, unpublished.

    Google Scholar 

  90. T. Yanagida, J. Mol. Biol. 146: 539 (1981).

    Article  Google Scholar 

  91. K. Mihashi and P. Wahl, FEBS Lett. 52: 8 (1975).

    Article  Google Scholar 

  92. A. Eberstein and A. Rosenfalck, Acta Physiol. Scand. 57: 144 (1963).

    Article  Google Scholar 

  93. D. L. Taylor, J. Cell Biol. 68: 497 (1976).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Plenum Press, New York

About this chapter

Cite this chapter

Carlson, F.D. (1983). The Application of Quasi-Elastic Light Scattering to the Study of Muscular Contraction. In: Earnshaw, J.C., Steer, M.W. (eds) The Application of Laser Light Scattering to the Study of Biological Motion. NATO Advanced Science Institutes Series, vol 59. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-4487-2_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-4487-2_28

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-4489-6

  • Online ISBN: 978-1-4684-4487-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics