Skip to main content

Frequency and Time Domain Analysis of Epithelial Transport Regulation

  • Chapter
New Insights into Cell and Membrane Transport Processes

Part of the book series: New Horizons in Therapeutics ((NHTH))

Abstract

The prime responsibility of most epithelia is to maintain plasma electrolyte and nonelectrolyte composition. Once a perturbation in plasma composition is sensed by osmo-, chemo-, or pressure receptors, a hormonal or neural signal can then initiate a series of intracellular events that ultimately modify the rate and sometimes even the direction of epithelial transport. To perform this function, an epithelium must be constructed so that it can actively and on demand absorb, secrete, or restrict the movements of substances between the plasma and external environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arruda, J. A. L., Sabatini, S., Mola, R., and Dytko, G., 1980, Inhibition of H+ secretion in the turtle bladder by colchicine and vinblastine, J. Lab. Clin. Med. 96:450–459.

    PubMed  CAS  Google Scholar 

  • Christensen, O., and Bindslev, N., 1982, Fluctuation analysis of short-circuit current in a warm-blooded sodium retaining epithelium: Site, current density and interaction with triamterene, J. Membr. Biol 65:19–30.

    Article  PubMed  CAS  Google Scholar 

  • Clausen, C., and Dixon, T. E., 1984, Membrane area changes associated with proton secretion in turtle urinary bladder studied using impedance analysis techniques, in: Current Topics in Membranes and Transport, Vol. 20 (J. B. Wade and S. A. Lewis, eds.). Academic Press, Orlando, Florida, pp. 47–60.

    Google Scholar 

  • Clausen, C., and Fernandez, J. M., 1981, A low-cost method for rapid transfer function measurements with direct application to biological impedance analysis. Pflugers Arch. 390:290–295.

    Article  PubMed  CAS  Google Scholar 

  • Clausen, C., and Wills, N. K., 1981, Impedance analysis in epithelia, in: Ion Transport by Epithelia. (S. G. Schultz, ed.). Raven Press, New York, pp. 79–91.

    Google Scholar 

  • Clausen, C., Lewis, S. A., and Diamond, J. M., 1979, Impedance analysis of a tight epithelium using a distributed resistance model, Biophys. J. 26:291–318.

    Article  PubMed  CAS  Google Scholar 

  • Clausen, C., Machen, T. E., and Diamond, J. M., 1983, Use of AC impedance analysis to study membrane changes related to acid secretion in amphibian gastric mucosa, Biophys. J. 41:167–178.

    Article  PubMed  CAS  Google Scholar 

  • Cole, K. S., 1968, Membranes, Ions, and Impulses, University of California Press, Berkeley.

    Google Scholar 

  • Colquhoun, D., and Hawkes, A. G., 1983, The principles of the stochastic interpretation of ion-channel mechanisms, in:Single-Channel Recording (B. Sakmann and E. Neher, eds.), Plenum Press, New York, pp. 135–175.

    Google Scholar 

  • Cull-Candy, S. G., and Parker, I., 1983, Experimental approaches used to examine single glutamate receptor ion channels in locust muscle fibers, in: Single-Channel Recording (B. Sakmann and E. Neher, eds.), Plenum Press, New York, pp. 389–400.

    Google Scholar 

  • Diamond, J. M., and Machen, T. E., 1983, Impedance analysis in epithelia and the problem of gastric acid secretion, J. Membr. Biol. 72:17–41.

    Article  PubMed  CAS  Google Scholar 

  • Dionne, V. E., 1981, The kinetics of slow muscle acetylcholine-operated channels in the garter snake. J. Physiol. (Lond.) 310:159–190.

    CAS  Google Scholar 

  • Fuchs, W., Larsen, E. H., and Lindemann, B., 1977, Current-voltage curve of sodium channels and concentration dependence of sodium-permeability in frog skin, J. Physiol. (Lond.) 267:137–166.

    CAS  Google Scholar 

  • Garty, H., and Edelman, I. S., 1983, Amiloride-sensitive trypsinization of apical sodium channels, J. Gen. Physiol. 81:785–803.

    Article  PubMed  CAS  Google Scholar 

  • Gluck, S., Cannon, C., and Al-Awqati, Q., 1982, Exocytosis regulates urinary acidification in turtle bladder by rapid insertion of H+ pumps into the luminal membrane, Proc. Natl. Acad. Sci. U.S.A. 79:4327–4331.

    Article  PubMed  CAS  Google Scholar 

  • Gögelein, H., and Greger, R., 1984, Single channel recordings from basolateral and apical membranes of renal proximal tubules, Pflugers Arch. 401:424–426.

    Article  PubMed  Google Scholar 

  • Guggino, S. E., Suarez-Isla, B. A., Guggino, W. B., Green, N., and Sacktor, B., 1985, Ba++ sensitive, Ca++ activated K+ channels in cultured rabbit medullary thick ascending limb cells (MTAL) and cultured chick kidney cells (CK), Kidney Int. 27:209.

    Google Scholar 

  • Hamill, O. P., Marty, A., Neher, E., Sakmann, B., and Sigworth, F. J., 1981, Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 391:85–100.

    Article  PubMed  CAS  Google Scholar 

  • Handler, J. S., Preston, A. S., and Orloff, J., 1972, Effect of ADH, aldosterone, ouabain and amiloride on toad bladder epithelial cells. Am. J. Physiol. 222:1071–1074.

    PubMed  CAS  Google Scholar 

  • Hanrahan, J. W., Alles, W. P., and Lewis, S. A., 1984, Basolateral anion and K channels from rabbit urinary bladder epithelium, J. Gen. Physiol. 84:30a.

    Google Scholar 

  • Hudson, R. L., and Schultz, S. G., 1984, Sodium coupled sugar transport: Effects on intracellular sodium activities and sodium pump activity. Science 224:1237–1239.

    Article  PubMed  CAS  Google Scholar 

  • Hunter, M., Lopes, A. G., Boulpaep, E. L., and Giebisch, G., 1984, Single channel recordings of calcium-activated potassium channels in the apical membrane of rabbit cortical collecting tubules, Proc. Natl. Acad. Sci. U.S.A. 81:4237–4239.

    Article  PubMed  CAS  Google Scholar 

  • Koeppen, B. M., Beyenbach, K. W., and Helman, S. I., 1984, Single channel currents in renal tubules, Am. J. Physiol. 247:F380-F384.

    PubMed  CAS  Google Scholar 

  • Lewis, S. A., and Alles, W. P., 1984, Analysis of ion transport using frequency domain measurements, in: Current Topics in Membranes and Transport, Vol. 20 (J. B. Wade and S. A. Lewis, eds.). Academic Press, Orlando, FL, pp. 87–103.

    Google Scholar 

  • Lewis, S. A., and de Moura, J. L. C., 1982, Incorporation of cytoplasmic vesicles into apical membrane of mammalian urinary bladder. Nature 297:685–688.

    Article  PubMed  CAS  Google Scholar 

  • Lewis, S. A., and de Moura, J. L. C., 1984, Apical membrane area of rabbit urinay bladder increases by fusion of intracellular vesicles: An electrophysiological study, J. Membr. Biol. 82:123–136.

    Article  PubMed  CAS  Google Scholar 

  • Lewis, S. A., and Diamond, J. M., 1976, Na+ transport by rabbit urinary bladder, a tight epithelium, J. Membr. Biol. 28:1–40.

    Article  PubMed  CAS  Google Scholar 

  • Lewis, S. A., Eaton, D. C., and Diamond, J. M., 1976, The mechanism of Na+ transport by rabbit urinary bladder, J. Membr. Biol. 28:41–70.

    Article  PubMed  CAS  Google Scholar 

  • Lewis, S. A., Ifshin, M. S., Loo, D. D. F., and Diamond, J. M., 1984, Studies of sodium channels in rabbit urinary bladder by noise analysis, J. Membr. Biol. 80:135–151.

    Article  PubMed  CAS  Google Scholar 

  • Lewis, S. A., Butt, A. G., Bowler, M. J., Leader, J. P., and Macknight, A. D. C., 1985, Effects of anions on cellular volume and transepithelial Na+ transport across toad urinary bladder, J. Memb. Biol. 83:119–137.

    Article  CAS  Google Scholar 

  • Li, J. H. Y., Palmer, L. G., Edelman, I. S., and Lindemann, B., 1982, The role of sodium-channel density in the natriferic response of the toad urinary bladder to a antidiuretic hormone, J. Membr. Biol. 64:77–89.

    Article  PubMed  CAS  Google Scholar 

  • Lim, J. J., Kottra, G., Kampmann, L., and Frömter, E., 1984, Impedance analysis of Necturus gallbladder epithelium using extra-and intracellular microelectrodes, in: Current Topics in Membranes and Transport, Vol. 20 (J. B. Wade and S. A. Lewis, eds.). Academic Press, Orlando, FL, pp. 27–46.

    Google Scholar 

  • Lindemann, B., and Defelice, L. J., 1981, On the use of general network functions in the evaluation of noise spectra obtained from epithelia, in: Ion Transport by Epithelia (S. G. Schultz, ed.). Raven Press, New York, pp. 1–13.

    Google Scholar 

  • Lindemann, B., and Van Driessche, W., 1977, Sodium-specific membrane channels of frog skin are pores: Current fluctuations reveal high turnover. Science 195:292–294.

    Article  PubMed  CAS  Google Scholar 

  • Marty, A., Tan, Y. P., and Trautmann, A., 1984, Three types of calcium-dependent channels in rat lacrimal glands, J. Physiol. (Lond.) 357:293–325.

    CAS  Google Scholar 

  • Maruyama, Y., and Peterson, O. H., 1982a, Single channel currents in isolated patches of plasma membrane from basal surface of pancreatic acini. Nature 299:159–161.

    Article  PubMed  CAS  Google Scholar 

  • Maruyama, Y., and Peterson, O. H., 1982b, Cholecystokinin activation of single-channel currents is mediated by internal messenger in pancreatic acinar cells. Nature 300:61–63.

    Article  PubMed  CAS  Google Scholar 

  • Maruyama, Y., Peterson, O. H., Flanagan, P., and Pearson, G. T., 1983, Quantification of Ca2+-activated by K+ channels under hormonal control in pig pancreas acinar cells. Nature 305:288–232.

    Article  Google Scholar 

  • Minsky, B. D., and Chlapowski, F. J., 1978, Morphometric analysis of the translocation of luminal membrane between cytoplasm and cell surface of transitional epithelial cells during the expansion-contraction cycles of mammalian urinary bladder, J. Cell Biol. 77:685–697.

    Article  PubMed  CAS  Google Scholar 

  • Nelson, D. J., Tang, J. M., and Palmer, L. G., 1984, Single-channel recordings of apical membrane chloride conductance in A6 epithelial cells, J. Membr. Biol. 80:81–89.

    Article  PubMed  CAS  Google Scholar 

  • Olans, L., Sariban-Sohraby, S., and Benos, D. J., 1984, Saturation behavior of single amiloride-sensitive Na+ channels in planar lipid bilayers, Biophys. J. 46:831–835.

    Article  PubMed  CAS  Google Scholar 

  • Palmer, L. G., and Lorenzen, M., 1983, Antidiuretic hormone dependent membrane capacitance and water permeability in the toad urinary bladder. Am. J. Physiol. 244:F195-F204.

    PubMed  CAS  Google Scholar 

  • Palmer, L.G., Li, J. H. Y., Lindemann, B., and Edelman, I. S., 1982, Aldosterone control of the density of sodium channels in the toad bladder, J. Membr. Biol. 64:91–102.

    Article  PubMed  CAS  Google Scholar 

  • Sariban-Sohraby, S., Burg, M., Wiesmann, W. P., Chiang, P. K., and Johnson, J. P., 1984a, Methylation increases sodium transport into A6 apical membrane vesicles: Possible mode of aldosterone action. Science 225:745–746.

    Article  PubMed  CAS  Google Scholar 

  • Sariban-Sohraby, S., Latorre, R., Burg, M., Olans, L., and Benos, D., 1984b, Amiloride-sensitive epithelial Na+ channels reconstituted into planar lipid bilayer membranes, Nature 308:80–82.

    Article  PubMed  CAS  Google Scholar 

  • Schifferdecker, E., and Frömter, F., 1978, The AC impedanceof Necturus gallbladder epithelium. Pflugers Arch. 377:125–133.

    Article  PubMed  CAS  Google Scholar 

  • Stetson, D. L., and Steinmetz, P. R., 1983, Role of membrane fusion in CO2 stimulation of proton secretion by turtle bladder. Am. J. Physiol. 245:C113-C120.

    PubMed  CAS  Google Scholar 

  • Stetson, D. L., Lewis, S. A., Alles, W., and Wade, J. B., 1982, Evaluation by capacitance measurements of antidiuretic hormone induced membrane area changes in toad bladder, Biochim. Biophys. Acta 689:267–274.

    Article  PubMed  CAS  Google Scholar 

  • Suzuki, K., Kottra, G., Kampmann, L., and Frömter, E., 1982, Square wave pulse analysis of cellular and paracellular conductance pathways inNecturus gallbladder epithelium. Pflugers Arch 394:302–312.

    Article  PubMed  CAS  Google Scholar 

  • Taylor, A., Mamelak, M., Reaven, E., and Maffly, R., 1973, Vasopressin: Possible role of microtubules and microfilaments in its action, Science 181:347–350.

    Article  PubMed  CAS  Google Scholar 

  • Trautmann, A., and Siegelbaum, S. D., 1983, The influence of membrane isolation on single acetylcholine-channel current in rat myotubes, in: Single-Channel Recording (B. Sakmann and E. Neher, eds.). Plenum Press, New York, pp. 473–480.

    Google Scholar 

  • Van Driessche, W., and Erlij, D., 1983, Noise analysis of inward and outward Na+ currents across the apical border of ouabain-treated frog skin, Pflugers Arch 398:179–188.

    Article  PubMed  Google Scholar 

  • Van Driessche, W., and Gogelein, H., 1980, Attenuation of current and voltage noise signals recorded from epithelia, J. Theor. Biol. 86:629–648.

    Article  PubMed  Google Scholar 

  • Van Driessche, W., and Gullentops, K., 1982, Conductance fluctuation analysis in epithelia, in: Techniques in Cellular Physiology, Vol. 2 (P. F. Baker, ed.), Elsevier, Amsterdam, pp. 1–13.

    Google Scholar 

  • Van Driessche, W., and Lindemann, B., 1979, Concentration dependence of currents through single sodium-selective pores in frog skin, Nature 282:519–520.

    Article  PubMed  Google Scholar 

  • Wade, J. B., Stetson, D. L., and Lewis, S. A., 1981, ADH action: Evidence for a membrane shuttle mechanism, Ann. N.Y. Acad. Sci. 372:106–117.

    Article  PubMed  CAS  Google Scholar 

  • Warneke, J., and Lindemann, B., 1981, Effect of ADH on the capacitance of apical epithehal membranes. Adv. Physiol. Sci. 3:129–133.

    Google Scholar 

  • Wills, N. K., 1984, Mechanisms of ion transport by the mammalian colon revealed by frequency domain analysis techniques, in: Current Topics in Membranes and Transport, Vol. 20 (J. B. Wade and S. A. Lewis, eds.). Academic Press, Orlando, FL, pp. 61–85.

    Google Scholar 

  • Wills, N. K., and Lewis, S. A., 1980, Intracellular Na+ activity as a function of Na+ transport rate across a tight epithelium, Biophys. J. 30:181–186.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Lewis, S.A., Hanrahan, J.W. (1986). Frequency and Time Domain Analysis of Epithelial Transport Regulation. In: Poste, G., Crooke, S.T. (eds) New Insights into Cell and Membrane Transport Processes. New Horizons in Therapeutics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5062-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5062-0_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5064-4

  • Online ISBN: 978-1-4684-5062-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics