Skip to main content

Electromagnetic Field Effects on Cell Membranes and Cell Metabolism

  • Chapter
Electrochemistry in Research and Development

Abstract

After the discovery of galvanism at the end of the 18th century by Galvani and the foundation of electrochemistry by Ritter, since 1796[1] electric magnetic effects on cells, tissues and organisms have been registered leading to the expansion of electrophysiology by Du Bois-Reymond[2] and others during the 19th century[3] parallel to the development of fundamental electrochemistry[4].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. W. Ritter, “Beweis, daß ein ständiger Galvanismus den Lebensprozeß im Thierreich begleitet,” Weimar (1798).

    Google Scholar 

  2. E. Du Bois-Reymond, “Untersuchungen über thierische Elektrizität,” G. Reimer, Berlin (1848).

    Google Scholar 

  3. H. Berg, Historical roots of bioelectrochemistry, Experientia, 36: 1247–1249 (1980).

    Article  CAS  Google Scholar 

  4. R. Pethig, “Dielectric and Electronic Properties of Biological Materials,” John Wiley, New York (1979).

    Google Scholar 

  5. M. Senda, General Discussion of the 5th Intern. Symp. Bioelectrochem. Bionerg., Weimar, Sept. 3–9 (1979).

    Google Scholar 

  6. H. Berg, K. Augsten, E. Bauer, W. Förster, H. -E. Jacob, P. Mühlig, and H. Weber, Possibilities of cell fusion and transformation by electrostimulation, Bioelectrochem.Bioenerg., 12: 119 (1984).

    Article  CAS  Google Scholar 

  7. U. Zimmermann, Electric field-mediated fusion and related electrical phenomena, Biochim.Biophys.Acta, 694: 227–277 (1982).

    CAS  Google Scholar 

  8. H. -E. Jacob, W. Förster, and H. Berg, Microbiological implications of electric field effects. II. Inactivation of yeast cells and repair of their cell envelope, Z.Allgem.Mikrobiol., 21: 225–233 (1981).

    Article  CAS  Google Scholar 

  9. M. Senda, J. Takedo, Sh. Abe, and T. Nakamura, Induction of cell fusion of plant protoplasts by electrical stimulation, Plant Cell Physiol., 20: 144 (1979).

    Google Scholar 

  10. H. Berg, Biological implications of electric field effects. V. Fusion of blastomeres and blastocysts of mouse embryos, Bioelectrochem. Bioenerg., 9: 223–228 (1982).

    Article  Google Scholar 

  11. H. Berg, A. Kurischko, and R. Freund, Biological implications of electric field effects. VI. Fusion of mouse blastomeres without and within zona pellucida, Studia biophysica, 94: 103–104 (1983).

    Google Scholar 

  12. E. Neumann and K. Rosenheck, Permeability changes induced by electric impulses in vesicular membranes, J.Membr.Biol., 10: 279–290 (1972).

    Article  CAS  Google Scholar 

  13. U. Zimmermann, J. Schulz, and G. Pilwat, Transcullular ion flow in Escherichia coli.B and electrical sizing of bacterias, Biophys.J., 13: 1005–1013 (1973).

    Article  CAS  Google Scholar 

  14. K. Kinosita and T. Tsong, Voltage-induced pore formation and hemolysis of human erythrocytes, Biochim.Biophys.Acta, 471: 227–242 (1977).

    Article  CAS  Google Scholar 

  15. P. Lindner, E. Neumann, and K. Rosenheck, Kinetics of permeability changes induced by electric impulses in chromaffin granules, J.Membr.Biol., 32: 231–254 (1977).

    Article  CAS  Google Scholar 

  16. P. Mühlig, W. Förster, H. -E. Jacob, and H. Berg, Cell membrane permeation of the anthracycline violamycin BI induced by an electric field pulse, Poster on the X Jena Symp., Molecular-biological Mechanisms of Antitumor Antibiotics Actions, Weimar (1984), Studia biophysica, (1985) in preparation.

    Google Scholar 

  17. N. Shivarova, W. Förster, H. -E. Jacob and R. Grigorova, Microbiological implications of electric field effects. VII. Stimulation of plasmid transformation of Bacillus cereus protoplasts by electric field pulses, Z.Allg.Mikrobiol., 23: 595–599 (1983).

    Article  Google Scholar 

  18. E. Neumann, M. Schaefer-Ridder, Y. Wang, and P. H. Hofschneider, Gene transfer into mouse lyoma cells by electroporation in high electric fields, The EMBO Journal, 1: 841–845 (1982).

    CAS  Google Scholar 

  19. N. Shivarova, W. Förster, H. -E. Jacob, and R. Grigorova, Z.Allgem. Mikrobiol., 23: 595 (1983).

    Article  Google Scholar 

  20. U. Zimmermann and J. Vienken, in: “Cell Fusion, Gene Transfer and Transformation,” R. Beers and E. Bassett, eds., p. 171, Ravens Press, New York (1984).

    Google Scholar 

  21. H. Weber, W. Förster, H. Berg, and H. -E. Jacob, Parasexual hybridization of yeasts by electric field stimulated fusion of protoplasts, Current Genetics, 4: 165 (1981).

    Article  Google Scholar 

  22. H. J. Halfmann, C. C. Emeis, and U. Zimmermann, Electro-fusion and genetic analysis of fusion products of haploid and polyploid Saccharomyces yeast cells, FEMS Microbiology Letters, 20: 13–16 (1983).

    Article  Google Scholar 

  23. C. A. L. Bassett, A. A. Pilla, and R. J. Pawluk, A nonoperative salvage of surgically resistant pseudarthroses and nonunions by pulsing electromagnetic fields, Clin.Orthop., 124: 128 (1977).

    Google Scholar 

  24. A. Pilla, Bioelectrochemistry, ions, surfaces, membranes, Adv.Chem., 188: 126 (1970).

    Google Scholar 

  25. H. -E. Jacob, F. Siegemund, E. Bauer, and P. Mühlig, Fusion of plant protoplasts by dielectrophoresis and electric field pulse technique, Studia biophysica, 94: 99–100 (1983).

    Google Scholar 

  26. M. Senda, H. Morikawa, and J. Takeda, Proc. 5th Internat. Congr. Plant. Tissues Cult., p. 615 (1982).

    Google Scholar 

  27. G. Pilwat, H. -P. Richter, and U. Zimmermann, Giant culture cells by electric field-induced fusion, FEBS Letters, 133: 169 (1981).

    Article  CAS  Google Scholar 

  28. J. Teissie, U. P. Knutson, T. Y. Tsong, and M. D. Lane, Electric pulse-induced of 3T3 cells in monolayer culture, Science, 216: 537–538 (1982).

    Article  CAS  Google Scholar 

  29. U. Zimmermann and G. Köppers, Cell fusion by electromagnetic waves and its possible relevance for evolution, Naturwiss., 68: 577 (1981).

    Article  CAS  Google Scholar 

  30. J. Teissie, B. E. Knox, T. Y. Tsong, and J. Wehrle, Synethesis of adenosine triphosphate in respiration-inhibited submitochrondria particles induced by microsecond electric pulses, Proc.Natl.Acad. Sci.USA, 78: 7473–7477 (1081).

    Article  Google Scholar 

  31. H. -P. Richter, P. Scheurich, and U. Zimmermann, Electric field-induced of sea urchin eggs, Develop.Growth and Differ., 23: 479 (1981).

    Article  Google Scholar 

  32. D. Berg, I. Schumann, and A. Stelzner, Electrically stimulated fusion between myeloma cells and spleen cells, Studia biophysica, 94: 101–102 (1983).

    Google Scholar 

  33. A. Kurischko and H. Berg, 2nd Seminar. Electrostimulated Cell Fusion and Transformation, Jena, Sept. (1984).

    Google Scholar 

  34. S. Walliser and K. Redmann, Membrane polarization as a candidate for signalling altered cell functions, Studia biophysica, 94: 105–106 (1983).

    CAS  Google Scholar 

  35. M. Senda, Discussion at the UNESCO Forum Electrochemistry in Research and Development, Paris, June 1984.

    Google Scholar 

  36. A. A. Pilla, P. Sechaud, and B. McLeod, Electrochemical and electrical aspects of low-frequency electromagnetic current induction in biological systems, J.Biol.Physics, 11: 51 (1983).

    Article  CAS  Google Scholar 

  37. G. Schwarz, On the physico-chemical basis of voltage-dependent molecular gating mechanisms in biological membranes, J.Membrane Biol., 43: 127–148 (1978).

    Article  CAS  Google Scholar 

  38. E. Neumann, Electric field effects in biopolymer structures and electrical-chemical memory recording, in: “Ions in Macromolecular and Biological Systems,” D. H. Everett and B. Vincent, eds., Scientechnica, Bristol (1978).

    Google Scholar 

  39. S. I. Sukharev, L. V. Chernomordik I. G. Abidor, and Yu. A. Chizmadzhev, 466-Effects of UOZ ions on the properties of bilayer lipid membranes, Bioelectrochem.Bioenerg., 9: 133–140 (1982).

    Article  CAS  Google Scholar 

  40. J. Weaver and R. Mintzer, Decreased bilayer stability due to trans-membrane potentials, Physics Letters, 86A: 57 (1981).

    Article  Google Scholar 

  41. S. D. Smith and J. M. Feola, Effect of repetition rate and duty cycle on pulsed magnetic field modulation of LSA tumors in mice, J.Electrochem.Soc., 130: 1210 (1983).

    Article  Google Scholar 

  42. S. D. Smith and A. A. Pilla, Modulation of new limb regeneration by electromagnetically induced low level pulsating current, in: “Mechanisms of Growth Control,” R. O. Becker, ed., Thomas Springfield, 11:137 (1981).

    Google Scholar 

  43. A. A. Pilla, Electrochemical information transfer and its possible role in the control of cell function, in: “Electrical Properties of Bone and Cartilage,” C. T. Brighton, J.-Black, and S. R. Pollack, eds., Grune and Stratton, New York, p. 455 (1979).

    Google Scholar 

  44. L. A. Norton, L. A. Bourett, R. J. Majeska, and G. A. Rodan, Adherence and DNA synthesis changes in hard tissues cell culture produced by electric perturbation, in: “Electrical Properties of Bone and Cartilage,” C. T. Brighton, J. Black, and S. R. Pollack, eds., Grune and Stratton, New York, p. 443 (1979).

    Google Scholar 

  45. B. Sisken, B. McLeod, and A. A. Pilla, PMEF, DC and neuronal regeneration: Effect of electric field geometry, in: “Electrochemistry, Membranes, Cells and the Electrochemical Modulation of Cell and Tissue Function,” A. A. Pilla and A. Boynton, eds., Springer Verlag (1984).

    Google Scholar 

  46. M. Schwartz and D. Neumann, Neuritic outgrowth from regenerative goldfish retina is affected by pulsed electromagnetic fields, Trans. Bioelectr.Repair and Growth Soc., 1: 55 (1981).

    Google Scholar 

  47. A. A. Pilla, Electrochemical information transfer at living cell membranes, Ann.NY.Acad.Sci., 238: 149 (1974).

    Article  CAS  Google Scholar 

  48. A. A. Pilla, Mechanism of electrochemical phenomenon in tissue repair and growth, Bioelectrochem.Bioenerg., 1: 227 (1974).

    Article  CAS  Google Scholar 

  49. A. Chiabrera, M. Hinsenkamp, A. A. Pilla, J. Ryaby, D. Ponta, A. Belmont, F. Beltrame, M. Grattarola, and C. Nicolini, Cytofluorometry of electromagnetically controlled cell differentiation, J.Histochem.Cytochem., 27: 375 (1979).

    Article  CAS  Google Scholar 

  50. H. Murray, W. J. O’Brien, and M. Oregel, Pulsed electromagnetic fields and peripheral nerve regeneration in the cat, Anat.Rec., 205: 137A (1983).

    Google Scholar 

  51. P. H. Delpert, N. Cheng, M. J. Hoogmartens, J. C. Mulier, W. Sansen, and W. De Loecker, The effects of pulsed electromagnetic fields on metabolism in rat skin, 3rd Annual BRAGGS, San Francisco, California, p.67, Oct. (1983).

    Google Scholar 

  52. R. Korenstein, D. Somjen, F. Laub, H. Fischler, and Y. Binderman, Electric stimulation of bone cells in culture, VII. Intern. Symp. on Bioelectrochem., Stuttgart, July (1983).

    Google Scholar 

  53. H. P. Große and E. Bauer, unpublished results.

    Google Scholar 

  54. E. Selegny, J. M. Valleton, and J. C. Vincent, Monitoring of mono-stable systems and memory in multistable systems, Bioelectrochem. Bioenerg., 10: 133 (1983).

    Article  CAS  Google Scholar 

  55. A. A. Pilla, The rate modulation of cell and tissue function via electrochemical information, in: “Mechanisms of Growth Control,” R. O. Becker, ed., Charles C. Thomas, Springfield, p. 211 (1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Plenum Press, New York

About this chapter

Cite this chapter

Berg, H. (1985). Electromagnetic Field Effects on Cell Membranes and Cell Metabolism. In: Kalvoda, R., Parsons, R. (eds) Electrochemistry in Research and Development. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5098-9_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5098-9_25

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5100-9

  • Online ISBN: 978-1-4684-5098-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics