Skip to main content

Neurotransmitters in the Basal Ganglia and Motor Thalamus: Their Role for the Regulation of Muscle Tone

  • Conference paper
The Basal Ganglia II

Abstract

Stimulated by Ehringer and Hornykiewicz’s (1960) fundamental finding of a highly decreased dopamine content in the neostriata of Parkinsonian patients there has been increasing interest in neurotransmitter mechanisms in the basal ganglia and their role in physiological and pathological processes. Aided by the advent of new neuroanatomical and neurochemical technigues and the use of modern electrophysiological and pharmacological methods, new concepts of basal ganglia function have emerged which, although still inadaeguate, allow a better integration of the experimental and clinical data of different disciplines involved in basal ganglia research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anden, N.E., and Johnels, B., 1977, Effect of local application of apomorphine to the corpus striatum and to the nucleus accumbens on the reserpine-induced rigidity in rats, Brain Res., 133:386.

    Article  PubMed  CAS  Google Scholar 

  • Anderson, M., and Yoshida, M., 1977, Electrophysiological evidence for branching nigral projections to the thalamus and the superior colliculus, Brain Res., 137:361.

    Article  PubMed  CAS  Google Scholar 

  • Arnt, J., 1981, Turning behaviour and catalepsy after injection of excitatory amino acids into rat substantia nigra, Neurosci. Lett., 23:337.

    Article  PubMed  CAS  Google Scholar 

  • Arnt, J., and Scheel-Krüger, J., 1980, Intranigral GABA antagonists produce dopamine-independent biting in rats, Eur. J. Pharmacol., 62:51.

    Article  PubMed  CAS  Google Scholar 

  • Beckstead, R.M., and Cruz, C.J., 1986, Striatal axons to the globus pallidus, entopeduncular nucleus and substantia nigra come mainly from separate cell populations in cat, Neurosci., 19:147.

    Article  CAS  Google Scholar 

  • Bolam, J.P., Somogyi, P., Takagi, H., Fodor I., and Smith, A.D., 1983, Localization of substance P-like immunoreactivity in neurons and nerve terminals in the neostriatum of the rat: a correlated light and electron microscopic study, J. Neurocytol., 12:325.

    Article  PubMed  CAS  Google Scholar 

  • Bolam, J.P., Wainer P.W., and Smith, A.D., 1984, Characterization of cholinergic neurons in the rt neostriatum. A combination of choline acetyltransferase immunocytochemistry, Golgi-impregnation and electron microscopy, Neurosci., 12:711 .

    Article  CAS  Google Scholar 

  • Brownstein, M.J., Mroz, E.A., Tappaz M.L., and Leeman, S.E., 1977, On the origin of substance P and glutamic acid decarboxylase (GAD) in the substantia nigra, Brain Res., 135:315.

    Article  PubMed  CAS  Google Scholar 

  • Bruyn, G.W., 1968, Huntington’s chorea historical, clinical and laboratory synopsis, in: Handbook of Clinical Neurology 6, P.J. Vinken and G.W. Bruyn, eds., Elsevier North-Holland, Amsterdam.

    Google Scholar 

  • Carpenter, M.B., 1981, Anatomy of the corpus striatum and brain stem integrating systems, In: Handbook of Physiology, Section I, Vol. II, J.M. Brookhart and V.B. Mountcastle, eds., American Physiol. Soc., Bethesda, Maryland.

    Google Scholar 

  • Cools, A.R., Jaspers, R., Kolasiewicz, W., Sontag K.-H., and Wolfarth, S., 1983, Substantia nigra is a station that not only transmits but also transforms incoming signals for its behavioural expression: striatal dopamine and GABA-mediated responses of pars reticulata neurons, Behav. Brain Res., 7:39.

    Article  PubMed  CAS  Google Scholar 

  • Coyle, J.T., and Schwarcz, R., 1976, Lesion of striatal neurones with kainic acid provides a model for Huntington’s chorea. Nature, 263:244.

    Article  PubMed  CAS  Google Scholar 

  • Coyle, J.T., Schwarcz, R., Bennett J.P., and Caupochiaro, P., 1977, Clinical, neuropathologic and pharmacologic aspects of Huntington’s disease: correlates with a new animal model, Prog. Neuro-Psychopharmacol., 1:13.

    Article  CAS  Google Scholar 

  • DeLong, M.R., and Georgopoulos, A.P., 1981, Motor functions of the basal ganglia. In: Handbook of Physiology, Section 1, Vol. II, J.M. Brookhart, and V.B. Mountcastle, eds., American Physiol. Soc, Bethesda, Maryland.

    Google Scholar 

  • Deniau, J.M., Hammond, C., Riszk A., and Feger, J., 1978, E1ectrophysiological properties of identified output neurons of the rat substantia nigra (pars compacta and pars reticulata): evidence for the existence of branched neurons, Exo.Brain Res., 32:409.

    CAS  Google Scholar 

  • Deniau, J.M., and Chevalier, G., 1985, Disinhibition as a basic process in the expression of striatal functions. II. The striato-nigral influence on thalmocortical cells of the ventromedial thalamic nucleus, Brain Res., 334:227.

    Article  PubMed  CAS  Google Scholar 

  • Di Chiara, G., and Morelli, M., 1984, Output pathways mediating basal ganglia function, in: The Basal Ganglia, Structure and Function, J.S. Mc Kenzie, R.E. Kemm, and L.N. Wilcock, eds., Plenum Press, New York, London.

    Google Scholar 

  • Di Chiara, G., Morelli, M., Porceddu, M.L., and Gessa, G.L., 1979, Role of thalamic γ-aminobutyrate in motor functions: catalepsy and ipsiversive turning after intrathalamic muscimol, Neurosci., 4:1453.

    Article  Google Scholar 

  • Dickinson, S.L., and Slater, P., 1982, Effects of striatal and pallidal lesions and intrapallidal drugs on tremorine induced rigidity in the rat, Neurosci. Lett., 29:163.

    Article  PubMed  CAS  Google Scholar 

  • Di Figlia, M., Aronin N., and Martin, J.B., 1982, Light and electron microscopic localization of immunoreactive leu-enkephalin in the monkey basal ganglia, J. Neurosci., 2:303.

    Google Scholar 

  • Donoghue, J.P., and Herkenham, M., 1986, Neostriatal projections from individual cortical fields conform to histochemically distinct striatal compartments in the rat, Brain Res., 365:397.

    Article  PubMed  CAS  Google Scholar 

  • Ehringer, H., and Hornykiewicz, O., 1960, Verteilung von Noradrenalin und Dopamin (3-Hydroxytyramin) im Gehirn des Menschen und ihr Verhalten bei Erkrankungen des extrapyramidalen Systems, Klin. Wochenschr., 38:1236.

    Article  PubMed  CAS  Google Scholar 

  • Ellenbroek, B., Klockgether, T., Turski L., and Schwarz, M., 1986, Distinct sites of functional interaction between dopamine, acetylcholine and GABA within the neostriatum: An electromyographic study in rats, Neurosci., 17:79.

    Article  CAS  Google Scholar 

  • Ellenbroek, B., Schwarz, M., Sontag K.-H., and Cools, A., 1984, The role of the colliculus superior in the expression of muscular rigidity, Eur. J. Pharmacol., 104:117.

    Article  CAS  Google Scholar 

  • Ellenbroek, B., Schwarz, M., Sontag K.-H., and Cools, A., 1985 a, The importance of the striato-nigro-collicular pathway in the expression of haloperidol induced tonic EMG activity, Neurosci. Lett., 54:189.

    Article  PubMed  CAS  Google Scholar 

  • Ellenbroek, B., Schwarz, M., Sontag, K.-H., Jaspers R., and Cools, A., 1985 b, Muscular rigidity and delineation of a dopamine specific neostriatal subregion: Tonic EMG activity in rats, Brain Res., 345:132.

    Article  PubMed  CAS  Google Scholar 

  • Fibiger, H.C., 1982, The organization and some projections of cholinergic neurons of the mammalian forebrain, Brain Res. Rev., 4:327.

    Article  Google Scholar 

  • Filion, M., and Hebert, R., 1983, Redundancy in ascending and descending pathways mediating head turning elicited by entopenduncular stimulation in the cat, Neurosci., 10, 1:169.

    Article  Google Scholar 

  • Filion, M., Tremblay, L., Dipaolo, T., and Bedard, P.J., 1986, Effects of apomorphine on spontaneous activity of globus pallidus neurons in monkeys rendered Parkinsonian by MPTP, Abstracts 2nd Triennial Symposium IBAGS, Victoria, Canada, July 21 – 23.

    Google Scholar 

  • Fonnum, F., Storm-Mathisen J., and Divac, I., 1981, Biochemical evidence for glutamate as neurotransmitter in corticostriatal and corticothalamic fibres in rat brain, Neurosci., 6:863.

    Article  CAS  Google Scholar 

  • Gale, K., and Casu, M., 1981, Dynamic utilization of GABA in substantia nigra. Regulation by dopamine and GABA in the striatum and its clinical and behavioural implications, Mol. Cell Biochem., 39:369.

    Article  PubMed  CAS  Google Scholar 

  • Golembiowska-Nikitin, K., Sontag, K.-H., and Osborne, N.N., 1981, 3H-spiroperidol binding to striatal membranes of mutant Han-Wistar rats which exhibit spastic paresis, Experientia 37:490.

    Article  Google Scholar 

  • Graybiel, A.M., and Ragsdale, C.W., 1979, Fiber connections of the basal ganglia, in: Development and Chemical Specifity of Neurons, M. Cuenod, G.W. Kreutzberg, and F.E. Bloom, eds., Elsevier North-Holland, Amsterdam.

    Google Scholar 

  • Groves, P.M., 1984, A theory of the functional organization of the neostriatum and the neostriatal control of voluntary movement, Brain Res. Rev., 5:109.

    Article  Google Scholar 

  • Havemann, U., Turski, L., and Kuschinsky, K., 1982, Role of GABAergic mechanisms in the substantia nigra pars reticulata in modulating morphine-induced muscular rigidity in rats, Neurosci. Lett., 31:25.

    Article  PubMed  CAS  Google Scholar 

  • Havemann, U., Turski, L., Schwarz, M., and Kuschinsky, K., 1983, Nigral GABAergic mechanisms and EMG acticity in rats: differences between pars reticulata and pars compacta, Eur. J. Pharmacol., 92:49.

    Article  PubMed  CAS  Google Scholar 

  • Heim, C., Schwarz, M., Klockgether, T., Jaspers, R., Cools A.R., and Sontag, K.-H., 1986, GABAergic neurotransmission within the reticular part of the substantia nigra (SNR): role for switching motor patterns and performance of movements, Exp. Brain Res., 63:375.

    Article  PubMed  CAS  Google Scholar 

  • Herkenham, M., 1979, The afferent and efferent connections of the ventromedial thalamic nucleus in the rat, J. Comp. Neurol., 183:487.

    Article  PubMed  CAS  Google Scholar 

  • Hikosaka, O., and Wurtz, R.H., 1983, Visual and oculomotor functions of monkey substantia nigra pars reticulata. III. Memory-contingent visual and saccadic responses, J. Neurophysiol., 49:1268.

    PubMed  CAS  Google Scholar 

  • Imperato, A., and Di Chiara, G., 1981, Behavioural effects of GABA-agonists infused in the mesencephalic reticular formation-deep layers of superior colliculus, Brain Res., 224:185.

    Article  PubMed  CAS  Google Scholar 

  • Jurna, I., and Lanzer, G., 1969, Inhibition of the effect of reserpine on motor control by drugs which influence reserpine rigidity, Naunyn-Schmiedebergs’ Arch. Pharmacol., 262: 309.

    CAS  Google Scholar 

  • Jurna, I., Ruzdic, N., Nell T., and Grossmann, W., 1972, The effect of α -methy1-p-tyrosine and substantia nigra lesions on spinal motor activity in the rat. Eur. J. Pharmacol. 20:341.

    Article  PubMed  CAS  Google Scholar 

  • Jurna, I., Brenner M., and Drum, P., 1978, Abolition of spinal motor disturbance by injections of dopamine receptor agonists, atropine and GABA into the caudate nucleus Neuropharmacol., 17:35.

    CAS  Google Scholar 

  • Kanazawa, I., Tanaka Y., and Fumiaki, C., 1986, ‘Choreic’ movement induced by unilateral kainate lesion of the striatum and L-DOPA administration in monkey, Neurosci. Lett., 71:241.

    Article  PubMed  CAS  Google Scholar 

  • Klockgether, T., Schwarz M., and Sontag, K.-H., 1979, Inhibition of gastrocnemius-soleus (GS) monosynaptic reflex in cats with 6-hydroxydopamine (6-OHDA)-lesion of substantia nigra (SN) Pflügers Arch., 379:R 45.

    Google Scholar 

  • Klockgether, T., Schwarz, M., Turski L., and Sontag, K.-H., 1986 a, The rat ventromedial thalamic nucleus and motor control: Role of N-methyl-Daspartate-mediated excitation, GABAergic inhibition, and muscarinic transmission, J. Neurosci., 6:1702.

    PubMed  CAS  Google Scholar 

  • Klockgether, T., Schwarz, M., Turski, L., Wolfarth S., and Sontag, K.-H., 1985 Rigidity and catalepsy after injectioas of muscimol into the ventromedial thalamic nucleus: An electromyographic study in the rat, Exp. Brain Res., 58:559.

    Article  PubMed  CAS  Google Scholar 

  • Klockgether, T., Turski, L., Schwarz M., and Sontag, K.-H., 1986 b, Motor actions of excitatory amino acids and their antagonists within the rat ventromedial thalamic nucleus, Brain Res., 399:1.

    Article  PubMed  CAS  Google Scholar 

  • Klockgether, T., Turski, L., Schwarz M., and Sontag, K.-H., 1987, Behavioural effects of excitatory amino acid antagonists within the rat ventromedial thalamic nucleus, in: Excitatory Amino Acid Transmission, T.P. Hicks, D. Lodge, and H. McLennan, eds., Alan Liss, New York.

    Google Scholar 

  • König, J.F.R., and Klippel, R.A., 1963, The Rat Brain. A Stereotaxic Atlas of the Forebrain and Lower Parts of the Brain Stem, Williams and Wilkins, Baltimore.

    Google Scholar 

  • Künzle, N., 1975, Bilateral projections from precentral motor cortex to the putamen and other parts of the basal ganglia: an autoradiographic study in Macaca fascucularis, Brain Res., 88:195.

    Article  PubMed  Google Scholar 

  • Langston, J.W., 1985, MPTP and Parkinsons’s disease, TINS 2:79.

    Google Scholar 

  • Miller, W., and DeLong, M.R., 1986, Changes in neuronal activity in the monkey globus pallidus after MPTP, Abstracts 2nd Triennial Symposium IBAGS, Victoria, Canada, July 21–23.

    Google Scholar 

  • Mitchell, I.J., Cross, A.J., Sambrook M.A., and Crossman, A.R., 1986, Neural mechanisms mediating 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced parkinsonism in the monkey: relative contributions of the striatopallidal and striatonigral pathways as suggested by 2-deoxyglucose uptake, Neurosci. Lett., 63:61.

    Article  PubMed  CAS  Google Scholar 

  • Nauta, W.J.H., and Domesick, V.B., 1984, Afferent and efferent relationship of the basal ganglia, In: Functions of the Basal Ganglia, D. Evered, and M. O’Connor, eds., Pitman, London.

    Google Scholar 

  • Neafsey, E.J., Hull C.D., and Buchwald, N.A., 1978, Unit activity in the basal ganglia and thalamus, EEG Clin. Neurophysiol., 44:714.

    Article  CAS  Google Scholar 

  • Osborne, N.N., Coelle, E.-F., Neuhoff, V., and Sontag, K.-H., 1977, Mutant spastic Han-Wistar rats: biochemical abnormalities in their striata, Neurosci. Lett., 6:251.

    Article  PubMed  CAS  Google Scholar 

  • Ossowska, K., Wardas, J., Warchal, D., Kolasiesicz, W., and Wolfarth, S., 1986, GABA mechanisms of ventromedial thalamic nucleus in morphineinduced muscle rigidity, Eur. J. Pharmacol., 129:245.

    Article  PubMed  CAS  Google Scholar 

  • Ossowska, K., Wedzony K., and Wolfarth, S., 1984, The role of the GABA mechanisms of the globus oallidus in mediating catalepsy, stereotypy and locomotor activity, Pharmacol. Biochem. Behav. 21:825.

    Article  PubMed  CAS  Google Scholar 

  • Patino, P., and Garcia-Munoz, M., 1985, Electrophysiological thalamic responses evoked by dopamine-receptor stimulation into the striatum, Brain Res., 361:1.

    Article  PubMed  CAS  Google Scholar 

  • Parent, A., Bouchard B., and Smith, Y., 1984, The striatopallidal and striatonigral projections: two distinct fiber systems in primate, Brain Res., 303:385.

    Article  PubMed  CAS  Google Scholar 

  • Pittermann, W., Sontag, K.-H., Wand, P., Rapp P., and Deerberg, F., 1976, Spontaneous occurrence of spastic paresis in Han-Wistar rats, Neurosci. Lett., 2:45.

    Article  PubMed  CAS  Google Scholar 

  • Pycock, C.J., Horton R.W., and Marsden, C.D., 1976, The behavioural effects of manipulating GABA funcion in the globus pallidus, Brain Res., 116: 353.

    Article  PubMed  CAS  Google Scholar 

  • Pycock, C.J., and Dawbarn, D., 1980, Acute motor effects of N-methyl-D-aspartic acid and kainic acid applied focally to mesencephalic dopamine cell body regions in the rat, Neurosci. Lett., 18:85.

    Article  PubMed  CAS  Google Scholar 

  • Reavill, C., Jenner, P., and Marsden, C.D., 1984, γ-Aminobutyric acid and basal ganglia outflow pathways, in: Functions of the Basal Ganglia, D. Evered, and M. O’Connor, Pitman, London.

    Google Scholar 

  • Ribak, C.E., Vaughn, J.E., and Roberts, E., The GABA neurons and their axon terminals in the rat corpus striatum as demonstrated by GAD immunocytochemistry. J. Comp. Neurol., 187:261.

    Google Scholar 

  • Ribak, C.E., Vaughn, J.E., and Roberts, E., 1980, GABAergic terminals decrease in substantia nigra following hemitranssections of the striatonigral and pallidonigral pathways, Brain Res.192:413.

    Article  PubMed  CAS  Google Scholar 

  • Rouzaire-Dubois, B., Hammond, C., Yelnik, J., and Feger, J., 1984, Anatomy and neurophysiology of the subthalamic efferent neurons, in: The Basal Ganglia, Structure and Function, J.S. McKenzie, R.E. Kemm, and L.N. Wilcock, eds., Plenum Press, New York.

    Google Scholar 

  • Scheel-Krüger, J., 1986, Dopamine-GABA interactions: evidence that GABA transmits, modulates and mediates dopaminergic functions in the basal ganglia and the limbic system, Acta neurol. scand., 73: suppl. 107.

    Google Scholar 

  • Scheel-Krüger, J., and Magelund, G., 1981, GABA in the entopeduncular nucleus and the subthalamic nucleus participates in mediating dopaminergic striatal output functions, Life Sci., 29:1555.

    Article  PubMed  Google Scholar 

  • Schultz, W., Ruffieux A., and Aebischer, P., 1983, The activity of pars compacta neurons of the monkey substantia nigra in relation to motor activation, Exp. Brain Res., 51:377.

    Article  Google Scholar 

  • Schwarcz, R., Foster, A.C., French, E.D., Whetsell, W.O., and Köhler, C., 1984, II. Excitotoxic models for neurodegenerative disorders, Life Sci., 35:19.

    Article  PubMed  CAS  Google Scholar 

  • Schwarz, M., Ikonomidou, C., Klockgether, T., Turski, L., Ellenbroek B., and Sontag, K.-H., 1986, The role of striatal cholinergic mechanisms for the development of limb rigidity: An electromyographic study in rats, Brain Res., 373:365.

    Article  PubMed  CAS  Google Scholar 

  • Schwarz, M., Löscher, W., Turski L., and Sontag, K.-H., 1985, Disturbed GABAergic transmission in mutant Han-Wistar rats: Further evidence for basal ganglia dysfunction, Brain Res., 347:258.

    Article  PubMed  CAS  Google Scholar 

  • Schwarz, M., Sontag K.-H., and Wand, P., 1984 a, Sensory-motor processing in substantia nigra pars reticulata in conscious cats, J. Physiol. (Lond.), 347:129.

    CAS  Google Scholar 

  • Schwarz, M., Sontag K.-H., and Wand, P., 1984 b, Non-dopaminergic neurones of the reticular part of substantia nigra can gate static fusimotor action onto flexors in cat, J. Physiol. (Lond.), 354:333.

    CAS  Google Scholar 

  • Sontag, K.-H., Heim, C., Schwarz, M., Jaspers, R., Cools A.R., and Wand, P., 1984, Conseguences of disturbed GABA-ergic transmission in substantia nigra pars reticulata in freely moving cats on their motor behaviour and in anaesthetized cats on their spinal motor elements, in: The Basal Ganglia, Structure and Function, J.S. Mc Kenzie, R.E. Kemm, and L.N. Wilcock, eds., Plenum Press, New York, London.

    Google Scholar 

  • Spokes, E.G.S., 1980, Neurochemical alterations in Huntington’s disease. A study of post-mortem brain tissue, Brain, 103:179.

    Article  PubMed  CAS  Google Scholar 

  • Stadler, H., Lloyd, K.G., Gadea-Ciria M., and Bartholini, G., 1973, Enhanced acetylcholine release by chlorpromazine and its reversal by apomorphine, Brain Res., 55:476.

    Article  PubMed  CAS  Google Scholar 

  • Starr, M.S., and Summerhayes, M., Role of the ventromedial nucleus of the thalamus in motor behaviour. I. Effects of focal injections of drugs. Neurosci., 10:1157.

    Google Scholar 

  • Trabucchi, M., Cheney, D.L., Racagni, G., and Costa, E., 1975, ‘In vitro’ inhibition of striatal acetylcholine turnover by L-DOPA, apomorphine and (+)-amphetamine, Brain Res., 85:130.

    Article  Google Scholar 

  • Turski, L., Havemann, U., and Kuschinsky, K., 1983, The role of substantia nigra in motility of the rat, Neuropharmacol., 22:1039.

    Article  CAS  Google Scholar 

  • Turski, L., Havemann, U., and Kuschinsky, K., 1984 a, GABAergic mechanisms in mediating muscular rigidity, catalepsy and postural asymmetry in rats. Differences between dorsal and ventral striatum, Brain Res., 322:49.

    Article  PubMed  CAS  Google Scholar 

  • Turski, L., Havemann, U., and Kuschinsky, K., 1984 b, Role of muscarinic cholinergic mechanisms in the substantia nigra pars reticulata in mediating muscular rigidity in rats, Naunyn-Schmiedeberg’s Arch. Pharmacol., 327:14.

    Article  CAS  Google Scholar 

  • Turski, L., Havemann, U., Schwarz, M., and Kuschinsky K., 1982, Disinhibition of nigral GABA output neurons mediates muscular rigidity elicited by striatal opioid receptor stimulation, Life Sci., 31:2327.

    Article  PubMed  CAS  Google Scholar 

  • Turski, L., Klockgether, T., Turski, W.A., Schwarz, M., and Sontag, K.-H., 1987, Substantia nigra and motor control in the rat: Effects of intranigral-kainate and -D-glutamylaminomethylsulphonate on motility,Brain Res., in press.

    Google Scholar 

  • Wolfarth, S., Kolasiewicz W., and Ossowska, K., 1986, Thalamus as a relay station for catalepsy and rigidity, Behav. Brain Res., 18:261.

    Article  Google Scholar 

  • Wolfarth, S., Kolasiewicz, W., and Sontag, K.-H., 1981, The effects of muscimol and Picrotoxin injections into the cat substantia nigra, Naunyn-Schmiedeberg’s Arch. Pharmacol., 317:54.

    CAS  Google Scholar 

  • Wolfarth, S., Wand P., and Sontag, K.-H., 1979, The effects of intranigral injections of Picrotoxin and carbachol in cats with a lesined nigrostriatal pathway, Neurosci. Lett., 11:197.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Plenum Press, New York

About this paper

Cite this paper

Klockgether, T. et al. (1987). Neurotransmitters in the Basal Ganglia and Motor Thalamus: Their Role for the Regulation of Muscle Tone. In: Carpenter, M.B., Jayaraman, A. (eds) The Basal Ganglia II. Advances in Behavioral Biology, vol 32. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5347-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5347-8_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5349-2

  • Online ISBN: 978-1-4684-5347-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics