Skip to main content

Part of the book series: NATO ASI Series ((NSSA,volume 197))

Abstract

When living cells are subjected to ionizing radiation, several functions may be impaired. Although the metabolic functions may continue, the cell may no longer be capable of propagation. This effect is called reproductive cell death. It is the most commonly-determined biological endpoint. On the other hand, the cell may still be able to divide, but some of the information of its genome is altered, a mutation has occurred. At much higher doses than required for these two effects to occur, the functioning of the cell may come to a complete stand-still (metabolic cell death). It is generally accepted that for the two first-mentioned events the essential target is the DNA1 In fact, it is observed that even one (unrepaired) DNA break means already reproductive cell death. The membrane has occasionally been discussed as an alternative important target, and it appears to be certain that it contributes to the metabolic cell death.1

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. von Sonntag, “The Chemical Basis of Radiation Biology”, Taylor and Francis, London (1987).

    Google Scholar 

  2. T. Alper, “Cellular Radiobiology”, Cambridge University Press, Cambridge (1979).

    Google Scholar 

  3. M. Edgren, T. Nishidai, O.C.A. Scott, and R. Revesz, Int. J. Radiat. Biol. 47: 463 (1985).

    CAS  Google Scholar 

  4. D. Schulte-Frohlinde, Free Radical Res. Commun. 6: 181 (1989).

    Article  CAS  Google Scholar 

  5. L. Revesz, Int. J. Radiat. Biol. 47: 361 (1985).

    CAS  Google Scholar 

  6. R.L. Willson, Int. J. Radiat. Biol. 17: 349 (1970).

    Article  Google Scholar 

  7. M. Isildar, M.N. Schuchmann, D. Schulte-Frohlinde, and C. von Sonntag, Int. J. Radiat. Biol. 41: 525 (1982).

    Article  CAS  Google Scholar 

  8. G.E. Adams, G.S. McNaughton, and B.D. Michael, Trans. Faraday Soc. 64: 902 (1968).

    Article  CAS  Google Scholar 

  9. G. Nucifora, B. Smaller, R. Remko, and E.C. Avery, Radiat. Res. 49: 96 (1972).

    Article  CAS  Google Scholar 

  10. S.A. Grachev, E.V. Kropachev, and G.I. Litvyakova, Izv. Akad. Nauk SSSR, Ser. Khim. 2746 (1988).

    Google Scholar 

  11. P. O’Neill, Radiat. Res. 96: 198 (1983).

    Article  Google Scholar 

  12. M.S. Akhlaq, S. Al-Baghdadi, and C. von Sonntag, Carbohydr. Res. 164: 71 (1987).

    Article  CAS  Google Scholar 

  13. E. Bothe and D. Schulte-Frohlinde, Z. Naturforsch. 37c: 1191 (1982).

    CAS  Google Scholar 

  14. D.G.E. Lemaire, E. Bothe, and D. Schulte-Frohlinde, Int. J. Radiat. Biol. 45: 351 (1984).

    Article  CAS  Google Scholar 

  15. K. Hildenbrand and D. Schulte-Frohlinde, Free Rad. Res. Commun. 6: 137 (1989).

    Article  CAS  Google Scholar 

  16. M.S. Akhlaq, H.-P. Schuchmann, and C. von Sonntag, Int. J. Radiat. Biol. 51: 91 (1987).

    Article  CAS  Google Scholar 

  17. D.G.E. Lemaire, E. Bothe, and D. Schulte-Frohlinde, Int. J. Radiat. Biol. 51: 319 (1987).

    Article  CAS  Google Scholar 

  18. D.J. Deeble and C. von Sonntag, Int. J. Radiat. Biol. 46: 247 (1984).

    Article  Google Scholar 

  19. D.J. Deeble, D. Schulz, and C. von Sonntag, Int J. Radiat. Biol. 49: 915 (1986).

    Article  CAS  Google Scholar 

  20. D.J. Deeble and C. von Sonntag, Int. J. Radiat. Biol. 49: 927 (1986).

    Article  Google Scholar 

  21. E. Bothe, G.A. Qureshi, and D. Schulte-Frohlinde, Z.Naturforsch. 38c: 1030 (1983).

    Google Scholar 

  22. M. Adinarayana, E. Bothe, and D. Schulte-Frohlinde, Int J. Radiat. Biol. 54: 723 (1988).

    Article  CAS  Google Scholar 

  23. A.M. Onal, D.G.E. Lemaire, E. Bothe, and D. Schulte-Frohlinde, Int. J. Radiat. Biol. 53: 787 (1988).

    Article  CAS  Google Scholar 

  24. S. Zheng, G.L. Newton, G. Gonick, R.C. Fahey, and J.F. Ward, Radiat. Res. 114: 11 (1988).

    Article  CAS  Google Scholar 

  25. D. Schulte-Frohlinde, G. Behrens, and A. Onal, Int. J. Radiat. Biol. 50: 103 (1986).

    Article  CAS  Google Scholar 

  26. E. Bothe, G. Behrens, E. Böhm, B. Sethuram, and D. Schulte-Frohlinde, Int. J. Radiat. Biol. 49: 57 (1986).

    Article  CAS  Google Scholar 

  27. W.A. Priitz and H. Mönig, Int. J. Radiat. Biol. 52: 677 (1987).

    Article  Google Scholar 

  28. W.A. Prütz, Int. J. Radiat. Biol. 56: 21 (1989).

    Article  Google Scholar 

  29. M. Quintiliani, Int. J. Radiat. Biol. 50: 573 (1986).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Plenum Press, New York

About this chapter

Cite this chapter

von Sonntag, C., Schuchmann, HP. (1990). Sulphur Compounds and “Chemical Repair” in Radiation Biology. In: Chatgilialoglu, C., Asmus, KD. (eds) Sulfur-Centered Reactive Intermediates in Chemistry and Biology. NATO ASI Series, vol 197. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5874-9_36

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5874-9_36

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5876-3

  • Online ISBN: 978-1-4684-5874-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics