Skip to main content

Genetic Analysis of the β-Adrenergic Receptor

  • Chapter
Neuroreceptor Mechanisms in Brain

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 287))

Abstract

Perhaps the largest class of hormone and neurotransmitter receptors is those whose signal transduction pathways involve the activation of guanine nucleotide binding regulatory proteins (G-proteins). Hormones which activate such receptors are prevalent in both the central nervous system and the periphery, and include glycoproteins (lutropin, thyrotropin), peptides (neurokinins, angiotensin), and small molecules (retinal, biogenic amines). The signal tranduction pathway common to these systems is initiated by the binding of the ligand to the cell-surface receptor. The agonist-bound receptor interacts with a G-protein, forming a high-affinity ternary hormone-receptor-G-protein complex, and catalyzing the exchange of GDP for GTP in the nucleotide binding site of the G-protein (Gilman, 1987). This nucleotide exchange reaction activates the G-protein and destabilizes the ternary complex. The activated G-protein then interacts with effector systems, leading to the modulation of intracellular second messenger levels. Effector systems which are activated by G-protein coupled pathways include adenylyl cyclase, guanylyl cyclase, phospholipases A and C, phosphodiesterases, Ca++ and K+ channels, and ion co-transport systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aoki, C., Zemcik, B.A., Strader, C.D., and Pickel, V.M., 1990, Cytoplasmic loop of -adrenergic receptors: synaptic and intracellular localization and relation to catecholaminergic neurons in the nuclei of the solitary tracts. Brain Res., in press.

    Google Scholar 

  • Benovic, J.L., Strasser, R.H., Benovic, J.L., Daniel, K., and Lefkowitz, R.J., 1986, Beta-adrenergic receptor kinase: identification of a novel protein kinase that phosphorylates the agonist-occupied form of the receptor. Proc. Natl. Acad. Sci. (USA), 83:2797–2801.

    Article  CAS  Google Scholar 

  • Benovic, J.L., Kuhn, H., Weyand, I., Codina, J., Caron, M.G., and Lefkowitz, R.J., 1987, Functional desensitization of the isolated -adrenergic receptor by the -adrenergic receptor kinase: potential role of an analog of the retinal protein arrestin (48-kDa protein)., Proc. Natl. Acad. Sci. (USA), 84:8879–8882.

    Article  PubMed  CAS  Google Scholar 

  • Bouvier, M.W., Hausdorff, A, DeBlasi, A., O-Dowd, B.F., Kobilka, B.K., Caron, M.G., and Lefkowitz, R.J., 1988, Removal of phosphorylation sites from the -adrenergic receptor delays the onset of agonist-promoted desensitization. Nature, 333:370–373.

    Article  PubMed  CAS  Google Scholar 

  • Cheung, A.H., Sigal, I.S., Dixon, R.A.F., and Strader, C.D., 1989, Agonist-promoted sequestration of the 2-adrenergic receptor requires regions involved in functional coupling with Gs. Mol. Pharm., 34:132–138.

    Google Scholar 

  • Cheung, A.H., Dixon, R.A.F., Hill, W.S., Sigal, I.S., and Strader, C.D., 1990, Separation of the structural requirements for agonist-promoted activation and sequestration of the -adrenergic receptor. Mol. Pharm, in press.

    Google Scholar 

  • Clark, R.B., Kunkel, M.W., Friedman, J., Goka, T.J., and Johnson, J. A, 1988, Activation of cAMP-dependent protein kinase is required for heterologous desensitization of adenylyl cyclase in S49 wild-type lymphoma cells. Proc. Natl. Acad. Sci. (USA), 85:1442–1446.

    Article  CAS  Google Scholar 

  • Clark, R.B., Friedman, J, Dixon, R.A.F., and Strader, C.D., 1989, Identification of a specific site required for rapid heterologous desensitization of the -adrenergic receptor by cAMP-dependent protein kinase., Mol. Pharm, 36:343–348.

    CAS  Google Scholar 

  • Dixon, R.A.F., Sigal, I.S., Rands, E., Register, R.B., Candelore, M.R., Blake, A.D., and Strader, C.D., 1987a, Ligand binding to the -adrenergic receptor involves its rhodopsin-like core. Nature, 326:73–77.

    Article  PubMed  CAS  Google Scholar 

  • Dixon, R.A.F., Sigal, I.S., Candelore, M.R., Register, R.B., Scattergood, W., Rands, E., and Strader, C.D., 1987b, Structural features required for ligand binding to the -adrenergic receptor. EMBO J, 6:3269–3275.

    CAS  Google Scholar 

  • Dixon, R.A.F., Sigal, I.S., and Strader, C.D., 1988, Structure-function analysis of the -adrenergic receptor. Cold Spring Harbor Symp. Quant. Biol., 53:487–489.

    Article  PubMed  CAS  Google Scholar 

  • Dixon, R.A.F., Hill, W.S., Candelore, M.R., Rands, E., Diehl, R.E., Marshall, M.S., Sigal, I.S. and Strader, CD. (1989) Genetic analysis of the molecular basis for -adrenergic receptor subtype specificity. Proteins: Structure, Function, and Genetics, 6:267–274.

    Article  CAS  Google Scholar 

  • Findlay, J.B.C. and Pappin, D.J.C., 1986, The opsin family of proteins. Biochem. J, 238:625–642.

    PubMed  CAS  Google Scholar 

  • Frielle, T., Daniel, K.W., Caron, M.G., and Lefkowitz, R.J., 1988, Structural basis of -adrenergic receptor subtype specificity studied with chimeric 1/2-adrenergic receptors. Proc. Natl. Acad. Sci. (USA), 85:9494–9498.

    Article  CAS  Google Scholar 

  • Gilman, A.G., 1987, G-proteins: transducers of receptor-generated signals. Ann. Rev. Biochem., 56:615–624.

    Article  PubMed  CAS  Google Scholar 

  • Hamm, H.E., Deretic, D., Arendt, A, Hargrave, P.A., Koenig, B., and Hofmann, K.P., 1988, Site of G protein binding to rhodopsin mapped with synthetic peptides to the subunit.Science241:832–835.

    Article  PubMed  CAS  Google Scholar 

  • Higashijima, T., Uzu, S., Nakajima, T., and Ross, E.M., 1988, Mastoparan, a peptide from wasp venom, mimics receptors by activating GTP-binding regulatory proteins (G-proteins). J. Biol. Chem, 262:6491–6494.

    Google Scholar 

  • Kobilka, B.K., MacGregor, C., Daniel, K., Kobilka, T.S., Caron, M.G., and Lefkowitz, R.J., 1987, Functional activity and regulation of human 2-adrenergic receptors expressed in Xenopus oocytes. J. Biol. Chem., 262:15796–15802.

    PubMed  CAS  Google Scholar 

  • Kubo, T., Bujo, H., Akiba, I., Nakai, J., Mishina, M., and Numa, S., 1988, Location of a region of the muscarinic acetylcholine receptor involved in selective effector coupling. FEBS Lett., 241:119–125.

    Article  PubMed  CAS  Google Scholar 

  • Kunkel, M.W., Friedman, J., Shenolikar, S., and Clark, R.B., 1989, Cell-free heterologous desensitization of adenylyl cyclase in S49 lymphoma cell membranes mediated by cAMP-dependent protein kinase. FASEB J3:2067–2074.

    CAS  Google Scholar 

  • Kwatra, M.M., Benovic, J.L, Caron, M.G., Lefkowitz, R. J., and Hosey, M.M., 1989, Phosphorylation of chick heart muscarinic cholinergic receptors by the -adrenergic receptor kinase., Biochemistry, 28:4543–4547.

    Article  PubMed  CAS  Google Scholar 

  • O’Dowd, B.F., Hnatowich, M., Regan, J.W., Leader, W.M., Caron, M.G., and Lefkowitz, R.J., 1988, Site-directed mutagenesis of the cytoplasmic domains of the human 2-adrenergic receptor. J. Biol. Chem., 263:15985–15992.

    Google Scholar 

  • Palczewski, K., McDowell, J.H., and Hargrave, P.A., 1988, Rhodopsin kinase: substrate specificity and factors that influence activity. Biochemistry, 27:2306–2313.

    Article  PubMed  CAS  Google Scholar 

  • Palm, D., Munch, G., Dees, C. and Hekman, M., 1989, Mapping of -adrenoceptor coupling domains to Gs-protein by site-specific synthetic peptides. FEBS Lett, 254:89–93.

    Article  PubMed  CAS  Google Scholar 

  • Rands, E., Candelore, M.R., Cheung, A.H., Strader, C.D. and Dixon, R.A.F., 1990, Mutational analysis of -adrenergic receptor glycosylation: N-linked sugar addition is required for receptor transport, but not function. J. Biol. Chem., (In press).

    Google Scholar 

  • Sibley, D.R. and Lefkowitz, R.J., 1987, Molecular mechanisms of receptor desensitization using the -adrenergic receptor-coupled adenylate cyclase system as a model. Nature, 317:124–129.

    Article  Google Scholar 

  • Strader, C.D., Sigal, I.S., Register, R.B., Candelore, M.R., Rands, E., and Dixon, R.A.F., 1987a, Identification of residues required for ligand binding to the -adrenergic receptor. Proc. Natl. Acad. Sci., 84:4384–4388.

    Article  PubMed  CAS  Google Scholar 

  • Strader, C.D., Dixon, R. A. F., Cheung, A. H., Candelore, M. R., Blake, A.D., and Sigal, I.S., 1987b Mutations that uncouple the -adrenergic receptor from Gs and increase agonist affinity. J. Biol. Chem., 262:16439–16443.

    PubMed  CAS  Google Scholar 

  • Strader, C.D., Sigal, I.S., Blake, A.D., Cheung, A.H., Register, R.B., Rands, E., Candelore, M.R., and Dixon, R.A.F., 1987c, The carboxyl terminus of the hamster -adrenergic receptor expressed in mouse L-cells is not required for receptor sequestration. Cell, 49:855–863.

    Article  PubMed  CAS  Google Scholar 

  • Strader, C.D., Sigal, I.S., Candelore, M.R., Rands, E., Hill, W.S., and Dixon, R.A.F., 1988, Conserved aspartic acid residues 79 and 113 of the -adrenergic receptor have different roles in receptor function. J. Biol Chem, 263:10267–10271.

    PubMed  CAS  Google Scholar 

  • Strader, C.D., Sigal, I.S., and Dixon, R.A.F., 1989a, Structural basis of -adrenergic receptor function. FASEB J, 3:1825–1832.

    CAS  Google Scholar 

  • Strader, C.D., Candelore, M.R., Hill, W.S., Sigal, I.S., and Dixon, R.A.F., 1989b, Identification of two serine residues involved in agonist activation of the-adrenergic receptor.J. Biol. Chem.264:13572–13578.

    PubMed  CAS  Google Scholar 

  • Wang, H.-Y., Lipfert, L., Malbon, C.C. and Bahouth, S., 1989, Site-directed anti-peptide antibodies define the topography of the -adrenergic receptor. J. Biol. Chem, 264:14424–14431.

    PubMed  CAS  Google Scholar 

  • Wilden, G.J., Katial, A., Craft, C., and Shinohara, T., 1986, Sequence analysis of bovine retinal S-antigen. FEBS Letters, 196:23–28.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Plenum Press, New York

About this chapter

Cite this chapter

Strader, C.D., Dixon, R.A.F. (1991). Genetic Analysis of the β-Adrenergic Receptor. In: Kito, S., Segawa, T., Olsen, R.W. (eds) Neuroreceptor Mechanisms in Brain. Advances in Experimental Medicine and Biology, vol 287. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5907-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5907-4_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5909-8

  • Online ISBN: 978-1-4684-5907-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics