Skip to main content

The Relationship Between Primary and Secondary Metabolism in Streptomycetes

  • Chapter
Genetics and Product Formation in Streptomyces

Abstract

Most of the work on control of gene expression in streptomycetes has been done up till now on pathways of secondary metabolism. Two primary metabolism systems, both catabolic, have been investigated in detail, namely those of glycerol (Smith and Chater, 1988) and galactose (Adams et al., 1988) catabolism. Biosynthetic pathways have however received less attention so far, although studies of the proline (D.A. Hodgson, personal communication) and histidine (Limauro et al., 1990) biosynthesis systems are in hand. This is perhaps surprising because of the obvious relationship of biosynthetic primary metabolism to secondary metabolism, in that the end products of the former constitute the starting materials for the latter. One potentially important aspect of this is that the availability of the primary metabolite precursors of secondary metabolism may be one factor in determining secondary metabolite yield. It might therefore be the case that where a primary metabolite is used in secondary metabolite synthesis, its own formation is subject to controls over and above those that apply when this is not so.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, C.W., Fornwald, J.A., Schmidt, F.J., Rosenberg, M. and Brawner, M.E., 1988, Gene organization and structure of the Streptomyces lividans gal operon, J. Bacteriol., 170: 203.

    PubMed  CAS  Google Scholar 

  • Balbas, P., Soberon, X., Merino, E., Zurita, M., Lomeli, H., Valle, F., Flores, N. and Bolivar, F., 1986, Plasmid vector pBR322 and its special-purpose derivatives - a review, Gene, 50: 3.

    Article  PubMed  CAS  Google Scholar 

  • Crabeel, M., Charlier, D., Cunin, R. and Glansdorff, N., 1979, Cloning and endonuclease restriction analysis of argE and of the control region of the argECBH bipolar operon in Escherichia coli, Gene, 5: 207.

    Article  PubMed  CAS  Google Scholar 

  • Glansdorff, N., 1987, Biosynthesis of arginine and polyamines, in “Escherichia coli and Salmonella typhimurium: cellular and molecular biology”, Ingraham, J.L., Low, K.B., Magasanik, B., Schaechter, M and Umbarger, H.E., eds., ASM, Washington, DC.

    Google Scholar 

  • Inbar, L. and Lapidot, A., 1988, Metabolic regulation operating in Streptomyces parvulus during actinomycin D synthesis, studied with 13C and 15N labeled precursors, by 13C, 15N NMR and GC-MS, J. Bacteriol., 170: 4055.

    PubMed  CAS  Google Scholar 

  • Inbar, L. and Lapidot, A., 1988, The structure and biosynthesis of new tetrahydropyrimidine derivatives in actinomycin D producer Streptomyces parvulus: use of 13C, 15N glutamate and 13C, 15N NMR spectroscopy, J. Biol. Chem., 263: 16014.

    Google Scholar 

  • Kralova, S., Kolinska, L., Vancura, A., Marsalek, J., Kristan, V. and Basarova, G., 1990, Metabolism of branched-chain amino acids and tylosin production in Streptomyces fradiae, Abstr. P13 Int. Symp. “Genetics and Product Formation in Streptomyces” (Erfurt, GDR, May 1–6 1990 ).

    Google Scholar 

  • Lim, C.-K., Smith, M.C.M., Petty, J., Baumberg, S. and Wootton, J.C., 1989, Streptomyces griseus streptomycin phosphotransferase: expression of its gene in Escherichia coli and sequence homology with other antibiotic phosphotransferases and with eukaryotic protein kinases, J. Gen. Microbiol., 135: 3289.

    Google Scholar 

  • Limauro, D., Avitabile, S., Cappellano, M., Puglia, A.M. and Bruni, C.B., 1990, Cloning and characterisation of the histidine biosynthetic gene cluste of Streptomyces coelicolor A3(2), Gene, 90: 31.

    Article  PubMed  CAS  Google Scholar 

  • Majumdar, S.K. and Kutzner, H.J., 1962, Studies on the biosynthesis of streptomycin, Appl. Microbiol., 10: 157.

    PubMed  CAS  Google Scholar 

  • Mansouri, K., Pissowotzki, K., Distler, J., Mayer, G., Heinzel, P., Braun, C., Ebert, A. and Piepersberg, W., 1989, Genetics of streptomycin production, in “Genetics and molecular biology of industrial microorganisms, C.L. Hershberger, S. Queener and G. Hegeman, eds., ASM, Washington, DC.

    Google Scholar 

  • Meade, H., 1985, Cloning of arge from Streptomyces: loss of gene in Arg mutants of S. cattleya, Bio/technology, 3: 917.

    Article  CAS  Google Scholar 

  • Nomi, R., 1963, Streptomycin formation by intact mycelium of Streptomyces griseus, J. Bacteriol., 86: 1220.

    PubMed  CAS  Google Scholar 

  • North, A.K., Smith, M.C.M. and Baumberg, S., 1989, Nucleotide sequence of a Bacillus subtilis arginine regulatory gene and homology of its product to the Escherichia coli arginine repressor, Gene, 80: 29.

    Article  PubMed  CAS  Google Scholar 

  • Parsot, C., Boyen, A., Cohen, G.N. and Glansdorff, N., 1988, Nucleotide sequence of Escherichia coli argB and argC genes: comparison of N-acetylglutamate kinase and N-acetylglutamate-z-semialdehyde dehydrogenase with homologous and analogous enzymes, Gene, 68: 275.

    Article  PubMed  CAS  Google Scholar 

  • Romero, J., Liras, P. and Martin, J.-F., 1986, Utilization of ornithine and arginine as specific presursors of clavulanic acid, Appl. Environ. Microbiol., 52: 892.

    PubMed  CAS  Google Scholar 

  • Romero, J., Liras, P. and Martin, J.-F., 1988, Isolation and biochemical characterization of Streptomyces clavuligerus mutants in the biosynthesis of clavulanic acid and cephamycin C, Appl. Microbiol. Biotechnol., 27: 510.

    Google Scholar 

  • Sercarz, E.E. and Gorini, L., 1964, Different contribution of exogenous and endogenous arginine to-repressor formation, J. Mol. Biol., 8: 254.

    Article  PubMed  CAS  Google Scholar 

  • Smith, C.P. and Chater, K.F., 1988, Structure and regulation of controlling sequences for the Streptomyces coelicolor glycerol operon, J. Mol. Biol., 204: 569.

    Article  PubMed  CAS  Google Scholar 

  • Smith, M.C.M., Mountain, A. and Baumberg, S., 1986, Sequence analysis of the Bacillus subtilis argC promoter region, Gene, 49: 53.

    Article  PubMed  CAS  Google Scholar 

  • Tabor, H. and Tabor, C.W., 1969, Partial separation of two pools of arginine in Escherichia coli preferential use of exogenous rather than endogenous arginine for the biosynthesis of 1,4-diaminobutane, J. Biol. Chem., 244: 6383.

    PubMed  CAS  Google Scholar 

  • Thoai, N.V., Thome-Beau, F. and Olomucki, A., 1966, Induction et specificité des enzymes de la nouvelle voie catabolique de l’arginine, Biochim. Biophys. Acta, 115: 73.

    Article  Google Scholar 

  • Udaka, S., 1966, Pathway-specific pattern of control of arginine biosynthesis in bacteria, J. Bacteriol., 91: 617.

    PubMed  CAS  Google Scholar 

  • Vancura, A., Vancurova, I., Kopecky, J., Marsalek, J., Cikanek, D., Basarova, G. and Kristan, V., 1989, Regulation of branched-chain amino acid biosynthesis in Streptomyces fradiae, a producer of tylosin, Arch. Microbiol., 151: 537.

    Article  CAS  Google Scholar 

  • Walker, J.B., 1975, Pathways of biosynthesis of the guanidinated inositol moieties of streptomycin and bluensomycin, Methods Enzymol., 43: 429.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Plenum Press, New York

About this chapter

Cite this chapter

Padilla, G. et al. (1991). The Relationship Between Primary and Secondary Metabolism in Streptomycetes. In: Baumberg, S., Krügel, H., Noack, D. (eds) Genetics and Product Formation in Streptomyces . Federation of European Microbiological Societies Symposium Series, vol 55. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5922-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5922-7_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5924-1

  • Online ISBN: 978-1-4684-5922-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics