Skip to main content

Part of the book series: NATO ASI Series ((NSSB,volume 265))

  • 192 Accesses

Abstract

Thin layers of alkali metals deposited on a GaAs(110) surface can enhance by-several orders of magnitude the oxidation kinetics of the substrate. Pure alkali oxides of different stoichiometry have been grown at 150 K on the GaAs(110) substrate, which does not react with the alkali oxides at this temperature. The spectral features of these different alkali oxides have been used to identify the oxygen species responsible for the Negative Electron Affinity activation of a Cs/O/GaAs photocathode, as well as the reaction products of the alkali-promoted oxidation of the GaAs(110) surface.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C.R.M. Grovenor “Microelectronic Materials”, Adam Hilger (Bristol, 1989).

    Google Scholar 

  2. For a review of previous work see, R. Miranda in “Physics and Chemistry of Alkali Metal Adsorption”. Ed. H.P. Bonzel, A.M. Bradshaw and G. Ertl. Elsevier, Amsterdam, 1989, p. 425.

    Google Scholar 

  3. E.G. Michel, M.C. Asensio and R. Miranda in “Metallization and Metal-Semiconductor interfaces”. Ed. LP. Batra. Plenum Press, New York (1989).

    Google Scholar 

  4. J.E. Ortega, Ph.D. Thesis, UAM (1990), unpublished.

    Google Scholar 

  5. J. Derrien and F. Arnaud d’Avitaya, Surf. Sci. 65, 668 (1977).

    Article  CAS  Google Scholar 

  6. P.N. First, R.A. Dragoset, J.A. Stroscio, R.J. Celotta and R.M. Feenstra, J. Vac. Sci. Technol. A7, 2868 (1989).

    Google Scholar 

  7. T.M. Wong, D. Heskett, N.J. diNardo and E.W. Plummer, Surf. Sci. 208, L1 (1989).

    Article  CAS  Google Scholar 

  8. M. Prietsch, M. Domke, C. Laubschat, T. Mandel, C. Xue and G. Kaindl, Z.Phys. B. 74, 21 (1989).

    Article  CAS  Google Scholar 

  9. Bulk work functions for the alkali metals are 2.42 (Na), 2.23 (K), 2.16 (Rb) and 1.8 eV (Cs).

    Google Scholar 

  10. I. Langmuir and K.H. Kingdon, Phys. Rev. 21, 380 (1923).

    Article  Google Scholar 

  11. D. Heskett, T.M. Wong, A.J. Smith, W.R. Graham, N.J. di Nardo and E.W. Plummer, J. Vac. Sci. Technol. B7, 915 (1989).

    Google Scholar 

  12. J. Topping, Proc. Roy. Soc. London, A114, 67 (1927).

    Google Scholar 

  13. T.M. Wong, N.J. di Nardo, D. Heskett and E.W. Plummer, Phys. Rev. B. 41, 12342 (1990).

    Article  CAS  Google Scholar 

  14. C.Y. Su, P.W. Chye, P. Pianetta, I. Lindau and W.E. Spicer, Surf. Sci. 86, 894 (1979).

    Article  CAS  Google Scholar 

  15. J.E. Ortega, J. Ferrón, R. Miranda, C. Laubschat, M. Domke, M. Prietsch and G. Kaindl, Phys. Rev. B 39, 12751 (1989).

    Article  CAS  Google Scholar 

  16. F. Bartels and W. Monch, Surf. Sci. 143, 315 (1984).

    Article  CAS  Google Scholar 

  17. G. Remmers, M. Priestch, C. Laubschat, M. Domke, T. Mandel, J.E. Ortega and G. Kaindl, J. Chem. Phys. to be published.

    Google Scholar 

  18. G. Landgren, R. Ludeke, Y. Jugnet, J.F. Morar and F.J. Himpsel, J. Vac. Sci. Technol. 2, 351 (1984).

    Article  CAS  Google Scholar 

  19. H.I. Starnberg, P. Soukiassian and Z. Hurych, Phys. Rev. B 39, 12775 (1989).

    Article  CAS  Google Scholar 

  20. H.I. Ernst and M.L. Yu, Phys. Rev. B 41, 12953 (1990).

    Article  CAS  Google Scholar 

  21. D.S. Villars and I. Langmuir, J. Am. Chem. Soc. 53, 486 (1931).

    Article  Google Scholar 

  22. C.Y. Su, I. Lindau and W.E. Spicer, Cem. Phys. Lett. 87, 523 (1982).

    Article  CAS  Google Scholar 

  23. R. Miranda, M. Prietsch, C. Laubschat, M. Domke, T. Mandel and G. Kaindl, Phys. Rev. B 39, 10387 (1989).

    Article  CAS  Google Scholar 

  24. A.L. Vazquez de Parga, C. Ocal, J.E. Ortega and R. Miranda, Vacuum, in press.

    Google Scholar 

  25. J. Ferrón, E.G. Michel and R. Miranda, unpublished.

    Google Scholar 

  26. W. Ho in Ref. 1, p. 159

    Google Scholar 

  27. G. Pirug, R. Dziembaj and H.P. Bonzel, Surface Sci. 221, 553 (1989).

    Article  CAS  Google Scholar 

  28. L. Galán, private communication.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Plenum Press, New York

About this chapter

Cite this chapter

Ortega, J.E., Miranda, R. (1991). Importance of Surface Chemistry/Catalysis in the Processing of Semiconductors. In: Brongersma, H.H., van Santen, R.A. (eds) Fundamental Aspects of Heterogeneous Catalysis Studied by Particle Beams. NATO ASI Series, vol 265. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5964-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5964-7_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5966-1

  • Online ISBN: 978-1-4684-5964-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics