Skip to main content

Possible Role for Ha-ras Expression in Inducible Steroidogenesis in Immortalized Granulosa Cell Lines

  • Chapter
The Superfamily of ras-Related Genes

Part of the book series: NATO ASI Series ((NSSA,volume 220))

Abstract

Primary granulosa cells cotransfected with SV40 DNA and the Ha-ras oncogene can be induced to produce progestins (progesterone and 20α-dihydroprogesterone) when incubated with 8-Br-cyclic AMP and substances elevating intracellular cyclic AMP (cAMP) such as forskolin, choleratoxin and the Bordetella pertussis invasive adenylate cyclase (BPAC). In contrast, cells transfected with SV40 DNA alone show only traces of steroidogenic activity under similar stimulation. The steroidogenic capacity of the cotransfected lines was correlated with the epithelioid appearance of the cells and low expression of actin and actin binding proteins in these cells. Expression of isoforms 2 and 3 of tropomyosins which possess high affinity for actin filaments was extremely low in these cells compared to cells transfected with SV40 DNA alone. Expression of p21 in cotransfected individual lines was correlated to the steroidogenic capacity. Primary granulosa cells and luteinized cells also express modestly but significantly p21 precipitable by monoclonal antibodies against the proto/mutated oncogene product. The cotransfected cells were highly tumorigenic when injected to nude mice but pretreatment of the cells with BPAC, which resulted in prolonged intracellular accumulation of cAMP, prevented metastatic spread of the tumor cells. Therefore, high levels of intracellular cAMP may arrest proliferation of the transformed cells both in vivo and in vitro. It is suggested that the expression of the Ha-ras oncogene may be involved in inducible steroidogenesis in immortalized granulosa cell lines, while the product of the protooncogene may be implicated in this process in normal cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. A. Weinberg, The action of oncogenes in the cytoplasm and nucleus, Science 230:770 (1985).

    Article  PubMed  CAS  Google Scholar 

  2. R. A. Weinberg, Oncogenes, antioncogenes, and the molecular basis of multistep carcinogenesis, Cancer Res. 49:3714(1989).

    Google Scholar 

  3. J. M. Bishop, The molecular genetics of cancer, Science 235:305 (1987).

    Article  PubMed  CAS  Google Scholar 

  4. D. A. Spandidos, and M. L. M. Anderson, Oncogenes and onco-suppressor genes: Their involvement in cancer, J. Pathol. 157:1 (1989).

    Article  PubMed  CAS  Google Scholar 

  5. D. Bar-Sagi, and J. R. Fermisco, Microinjection of the ras oncogene protein into PC12 cells induces morphological differentiation, Cell 42:841 (1985).

    Article  PubMed  CAS  Google Scholar 

  6. R. Muller, Proto-oncogene and differentiation, Trends Biochem. Sci. 11:129 (1986).

    Article  Google Scholar 

  7. R. Beug, P. A. Blandell, and T. Graf, Reversibility of differentiation and proliferation capacity in avian myelomonocytic cells transformed by ts E26 leukemia virus, Genes & Develop. 1:277 (1987).

    Article  CAS  Google Scholar 

  8. C. Shih, L. C. Padley, M. Murray, and R. A. Weinberg, Transforming genes of carcinomas and neuroblastomas introduced into mouse fibroblasts, Nature 290:261 (1981).

    Article  PubMed  CAS  Google Scholar 

  9. T. G. Krontiris, and G. M. Cooper, Transforming activity of human tumor DNAs, Proc. Natl. Acad. Sci. U.S.A. 78:1181(1981).

    Article  PubMed  CAS  Google Scholar 

  10. J. L. Bos, ras oncogenes in human cancer: A review, Cancer Res. 49:4682 (1989).

    PubMed  CAS  Google Scholar 

  11. A. Balmain, and I. B. Pragneil, Mouse skin carcinoma induced in vivo by chemical carcinogenes have atransforming Harvey-ras oncogene, Nature 303:72 (1983).

    Article  PubMed  CAS  Google Scholar 

  12. A. Eva, and S. Aaronson, Frequent activation of c-Kis a transforming gene in fibrosarcoma induced by methylchlanthrene, Science 220:506 (1983).

    Article  Google Scholar 

  13. R. W. Ellis, D. Defeo, T. Y. Shih, M. A. Gonda, H. A. Young, N. Tsuchida, D. R. Lowy, and E. M. Scolnick, The p21 src genes of Harvey and Kirstein sarcoma viruses originate from divergent members of a family of normal vertebrate genes, Nature 292:506 (1981).

    Article  PubMed  CAS  Google Scholar 

  14. L. F. Parada, C. J. Tabing, C. Shih, and R. A. Weinberg, Human EJ bladder carcinoma oncogene is homologue of Harvey sarcoma virus ras gene., Nature 297:474 (1982).

    Article  PubMed  CAS  Google Scholar 

  15. A. Hall, C. J. Marshall, and R. A. Weiss, Identification of transforming gene in two human sarcoma cell lines as a member of the ras gene family located on chromosome 1., Nature 303:396 (1983).

    Article  PubMed  CAS  Google Scholar 

  16. E. M. Scolnick, A. G. Papagerorge, and T. Y. Shih, Guanine nucleotide-binding activity as an assay for src protein of rat-derived murine sarcoma viruses, Proc. Natl. Acad. Sci. U.S.A. 76:5355 (1979).

    Article  PubMed  CAS  Google Scholar 

  17. M. R. Hanley, and T. Jackson, The ras gene: transformer and transducer, Nature (Lond.) 328:668 (1987).

    Article  CAS  Google Scholar 

  18. J. P. McGrath, D. J. Capon, D. V. Goeddel, and A. D. Levinson, Comparative biochemical properties of normal and activated human ras p21 protein, Nature 310:644 (1984).

    Article  PubMed  CAS  Google Scholar 

  19. M. C. Willingham, I. Pastan, T. Y. Shih, and E. M. Scolnick, Localization of src gene product of the Harvey strain of MSV to plasma membrane of transformed cells by electronmicroscopic immunocytochemistry., Cell 19:1005(1980).

    Article  PubMed  CAS  Google Scholar 

  20. B. M. Williamsen, A. Christensen, N. L. Hubbert, A. G. Papageorge, and D. R. Lowry, The p21 ras C-terminus is required for transformation and membrane association., Nature 310:583 (1986).

    Article  Google Scholar 

  21. J. B. Hurley, M. I. Simon, D. B. Teplow, J. D. Robishaw, and A. G. Gilman, Homologies between signal transducing G proteins and ras gene products, Science 226:860 (1984).

    Article  PubMed  CAS  Google Scholar 

  22. M. A. Lochrie, J. B. Hurley, and M. L. Simon, Sequence of the alpha subunit of phosphoreceptor G protein: Homologies between transducin, ras, and elongation factor, Science 228:96 (1985).

    Article  PubMed  CAS  Google Scholar 

  23. M. Barbacid, ras genes, Ann. Rev. Biochem. 56:779(1987).

    Article  PubMed  CAS  Google Scholar 

  24. I. G. Macara, and A. Wolfman, Signal transduction and ras gene family: Molecular switches of unknown function, Trends in Endocr. 1:26 (1989).

    Article  CAS  Google Scholar 

  25. G. P. Dotto, L. F. Parada, and R. A. Weinberg, Specific growth response of ras transformed embryo fibroblasts to tumor promoters, Nature 318:472 (1985).

    Article  PubMed  CAS  Google Scholar 

  26. I. Guerrero, H. Wong, A. Pellicer, and D. Burnstein, Activated N-ras gene induces neuronal differentiation of PC12 rat pheochromocytoma cells., J. Cell. Physiol. 129:71 (1986).

    Article  PubMed  CAS  Google Scholar 

  27. A. Amsterdam, A. Berkowitz, A. Nimrod, and F. Kohen, Aggregation of luteinizing hormone receptors in granulosa cells: A possible mechanism of desensitization to the hormone, Proc. Natl. Acad. Sci. U.S.A. 77:3440 (1980).

    Article  PubMed  CAS  Google Scholar 

  28. M. M. Sanders, and J. A. R. Midgley, Rat granulosa cell differentiation: An in vitro model., Endocrinology 111:614 (1982).

    Article  PubMed  CAS  Google Scholar 

  29. M. Knecht, T. Ranta, and K. J. Catt, Granulosa cell differentiation in vitro: Induction and maintenance of follicle-stimulating hormone receptors by adenosine 3’,5’-monophosphate, Endocrinology 113:949 (1983).

    Article  PubMed  CAS  Google Scholar 

  30. A. J. W. Hsueh, E. Y. Adashi, P. B. C. Jones, and J. Welsh T.H., Hormonal regulation of the differentiation of cultured ovarian granulosa cells, Endocr. Rev. 5:76 (1984).

    Article  PubMed  CAS  Google Scholar 

  31. A. Amsterdam, and S. Rotmensch, Structure-function relationships during granulosa cell differentiation., Endocr. Rev. 8:309 (1987).

    Article  PubMed  CAS  Google Scholar 

  32. A. Amsterdam, S. Rotmensch, A. Furman, E. A. Venter, and I. Vlodavsky, Synergistic effect of human chorionic gonadotropin and extracellular matrix on in vitro differentiation of human granulosa cells: progesterone production and gap junction formation, Endocrinology 124:1956 (1989).

    Article  PubMed  CAS  Google Scholar 

  33. J. S. Richards, Maturation of ovarian follicles: Action and interactions of pituitary and ovarian hormones on follicular cell differentiation, Physiol. Rev. 60:51 (1980).

    PubMed  CAS  Google Scholar 

  34. M. Knecht, A. Amsterdam, and K. J. Catt, The regulatory role of cyclic AMP in hormone-induced granulosa cell differentiation, J. Biol. Chem. 256:10628 (1981).

    PubMed  CAS  Google Scholar 

  35. J. S. Davis, L. L. Weakland, R. V. Farese, and L A. West, Luteinizing hormone increases inositol trisphosphate and cytosolic free Ca2+ in isolated bovine luteal cells, J. Biol. Chem. 262:8515 (1987).

    PubMed  CAS  Google Scholar 

  36. T. A. Fitz, R. M. Wah, W. A. Schmidt, and C. A. Winkle, Physiological characterization of transformed and cloned rat granulosa cells, Biol. Reprod. 40:250 (1989).

    Article  CAS  Google Scholar 

  37. A. Amsterdam, A. Zauberman, G. Meir, O. Pinhasi-Kimhi, B. S. Suh, and M. Oren, Cotransfection of granulosa cells with simian virus 40 and Ha-ras oncogene generates stable lines capable of induced steroidogenesis, Proc. Natl. Acad. Sci. U.S.A. 85:7582 (1988).

    Article  PubMed  CAS  Google Scholar 

  38. G. Baum, B. S. Suh, A. Amsterdam, and A. Ben-Ze’ev, Regulation of tropomyosin expression in transformed granulosa cell lines with steroidogenic ability, Dev. Biol. 142:115 (1990).

    Article  PubMed  CAS  Google Scholar 

  39. I. Hanukoglu, B. S. Suh, S. Himmelhoch, and A. Amsterdam, Induction and mitochondrial localization of cytochrome P450scc system enzymes in normal and transformed ovarian granulosa cells, J. Cell Biol. 111:1973 (1990).

    Article  Google Scholar 

  40. D. Michalovitz, A. Amsterdam, and M. Oren, Interactions between SV40 and cellular oncogenes in the transformation of primary rat cells, in: “Current Topics in Microbiology and Immunology,” ed., Springer-Verlag, (1989).

    Google Scholar 

  41. B. S. Suh, and A. Amsterdam, Establishment of highly steroidogenic granulosa cell lines by cotransfection with SV40 and Ha-ras oncogene: Induction of steroidogenesis by cAMP and its suppression by TPA, Endocrinology 127:2489 (1990).

    Article  PubMed  CAS  Google Scholar 

  42. I. Hanukoglu, Molecular biology of cytochrome P450 systems in steroidogenic tissues, in: “Follicular Development and the Ovulatory Response,” A. Tsafriri, and N. Dekel, ed., Ares-Serono Symposia Review, 23:233–252 (1989).

    Google Scholar 

  43. A. Amsterdam, and B. S. Suh, An inducible functional peripheral benzodiazepine receptor in mitochondria of steroidogenic granulosa cells, Endocrinology in press (1991).

    Google Scholar 

  44. H. Rennert, A. Amsterdam, J. T. Billheimer, and J. T. Strauss, Regulated expression of sterol carrier protein2 in the ovary: A key role for cyclic AMP., Submitted (1991).

    Google Scholar 

  45. K. C. McFarland, R. Sprengel, H. Phillips, M. Kohler, N. Rosemblit, K. Nikolics, D. L. Segaloff, and P. H. Seeburg, Lutropin-choriogonadotropin receptor: An unusual member of the G protein-coupled receptor family, Science 245:494 (1989).

    Article  PubMed  CAS  Google Scholar 

  46. H. Loosfelt, M. Misrahi, M. Atger, R. Salesse, M. T. V. Hai-Lui Thi, A. Jol’vet, A. Guiochon-Mantel, S. Sar, B. Jallai, J. Gamier, and E. Milgrom, Cloning and sequencing of oorcine LH-hCG receptor cDNA: Variants lacking transmembrane domain, Science 245:525 (1989).

    Article  PubMed  CAS  Google Scholar 

  47. B. S. Suh, R. Sprengel, P. H. Seeburg, and A. Amsterdam, Functional receptors to gonadotropins in oncogene-transformed steroidogenic granulosa cells, Proceedings of the 73rd Annual Meeting of the American Endocrine Society, 1991; Abstract 1851.

    Google Scholar 

  48. H. D. Schmitt, P. Wagner, E. Pfaff, and D. Gallwitz, The ras-related YPT1 gene product in yeast: a GTP-binding protein that might be involved in microtubule organization, Cell 47:401 (1986).

    Article  PubMed  CAS  Google Scholar 

  49. B. S. Suh, L. Eisenbach, and A. Amsterdam, Cyclic AMP suppresses metastatic spread in nude mice induced by steroidogenic rat granulosa cells transformed by SV40 and Ha-ras oncogene(s), Proceedings of the Annual Meeting of the Israeli Endocrine Society. (1991); Abstract 74.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Plenum Press, New York

About this chapter

Cite this chapter

Amsterdam, A., Eisenbach, L., Suh, B.S., Plehn-Dujowich, D., Tal, I.K., Dantes, A. (1991). Possible Role for Ha-ras Expression in Inducible Steroidogenesis in Immortalized Granulosa Cell Lines. In: Spandidos, D.A. (eds) The Superfamily of ras-Related Genes. NATO ASI Series, vol 220. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-6018-6_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-6018-6_25

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-6020-9

  • Online ISBN: 978-1-4684-6018-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics