Skip to main content

Useful Microorganisms

  • Chapter
Basic Food Microbiology

Abstract

Microorganisms are used in many facets of the food industry. Desired alterations of food by microorganisms are referred to as fermentations, regardless of the type of metabolism. By definition, fermentation is the anaerobic breakdown of an organic substance by an enzyme system, in which the final hydrogen acceptor is an organic compound. Hence, the aerobic oxidation of alcohol to acetic acid in vinegar production is not a true fermentation. Hence, for our purposes these alterations of foods are called food conversions. Since the enzyme systems of the microorganisms catalyze the changes in foods, for some reactions it is advantageous to use purified enzymes separated from the microbial cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  • Abbott, B. J.; Laskin, A. I.; and McCoy, C. J. 1973. Growth of Acinetobacter calcoaceticus on ethanol. Appi. Microbiol. 25: 787–792.

    CAS  Google Scholar 

  • Abbott, B. J. 1974. Effect of growth rate and nutrient limitation on the composition and biomass yield of Acinetobacter calcoaceticus. Appi. Microbiol. 28: 58–63.

    CAS  Google Scholar 

  • Acton, J. C., and Dick R. L. 1975. Improved characteristics for dry, fermented turkey sausage. Food Prod. Develop. 9 (8): 91–94.

    CAS  Google Scholar 

  • Amerine, M. A.; Berg, H. W.; and Cruess, W.N. 1972. The Technology of Wine Making. 3d ed. Westport, Conn.: AVI Publishing Company.

    Google Scholar 

  • Amin, G.; DeMot, R.; Van Dijck, K.; and Verachtert, H. 1985. Direct alcoholic fermentation of starchy biomass using amylolytic yeast strains in batch and immobilized cell systems. Appi. Microbiol. Biotechnol. 22: 237–245.

    CAS  Google Scholar 

  • Anon. 1981. Food from a fermenter looks and tastes like meat. Food Eng. 53(5): 117–118. Arbige, M. V.; Freund, P. R.; Silver, S. C.; and Zelko, J. T. 1986. Novel lipase for Cheddar cheese flavor development. Food Technol. 40(4): 91–98.

    Google Scholar 

  • Arnott, D. R.; Duitschaever, C. L.; and Bullock, D. H. 1974. Microbiological evaluation of yogurt produced commercially in Ontario. J. Milk Food Technol. 37: 11–13.

    Google Scholar 

  • Ashraf, M.; Vetter, R. L.; Nissen, S.; and Graham, D. L. 1981. Nutritional evaluation of methanol-based, yeast single-cell protein in a multigeneration rat study. Nutr. Rep. Int. 23: 813–824.

    CAS  Google Scholar 

  • Aston, J. W.; Giles, J. E.; Durward, I. G.; and Dulley, J. R. 1985. Effect of elevated ripening temperatures on proteolysis and flavour development in Cheddar cheese. J. Dairy Res. 52: 565–572.

    Article  Google Scholar 

  • Auclair, J., and Accolas, J.-P. 1983. Use of thermophilic lactic starters in the dairy industry. Antonie van Leeuwenhoek 49: 313–326.

    Article  CAS  Google Scholar 

  • Bacus, J. 1984. Update: Meat fermentation 1984. Food Technol. 38 (6): 59–63.

    Google Scholar 

  • Bellamy, W. D. 1974. Single cell proteins from cellulosic wastes. Biotechnol. Bioeng. 16: 869–880.

    Article  CAS  Google Scholar 

  • Biede, S. L., and Hammond, E. G. 1979. Swiss cheese flavor: 1. Chemical analysis. J. Dairy Sci. 62: 227–237.

    Article  CAS  Google Scholar 

  • Bisping, B., and Rehm, H.J. 1986. Glycerol production by cells of Saccharomyces cerevisiae immobilized in sintered glass. Appi. Microbiol. Biotechnol. 23: 174–179.

    CAS  Google Scholar 

  • Bitton, G.; Koopman, B.; and Wang, H. 1984. Bakers’ yeast assay procedure for testing heavy metal toxicity. Bull. Environ. Contam. Toxicol. 32: 80–84.

    Article  CAS  Google Scholar 

  • USEFUL MICROORGANISMS 495

    Google Scholar 

  • Böing, J. T. P. 1982. “Enzyme Production.” In Prescott andDunn’s Industrial Microbiology. 4th ed. G. Reed, ed. Westport, Conn.: AVI Publishing Co.

    Google Scholar 

  • Buckee, G, K.; Malcolm, P. T.; and Peppard, T. L. 1982. Evolution of volatile compounds during wort-boiling. J. Inst. Brew. 88: 175–181.

    CAS  Google Scholar 

  • Bynum, D. G., and Barbano, D. M. 1985. Whole milk reverse osmosis retentates for Ched-

    Google Scholar 

  • dar cheese manufacture: Chemical changes during aging. J. Dairy Sci. 68: 1–10. Calam, C. T., and Russell, D. W. 1973. Microbial aspects of fermentation process development. J. Appt. Chem. Biotechnol. 23: 225–237.

    Google Scholar 

  • Calleja, G. B.; Levy-Rick, S.; Lusena, C. V.; Nasim, A.; and Moranelli, F. 1982. Direct and quantitative conversion of starch to ethanol by the yeast Schwanniomyces alluvius. Biotechnol. Lett. 4: 543–547.

    Article  CAS  Google Scholar 

  • Calleja, G. B.; Yaguchi, M.; Levy-Rick, S.; Seguin, J. R. H.,; Roy, C.,; and Lusena, C. V. 1986. Single-cell protein production from potato starch by the yeast Schwanniomyces alluvius. J Ferment. Technol. 64: 71–75.

    CAS  Google Scholar 

  • Cardoso, M. B., and Nicoli, J. R. 1981a, Single cell protein from the thermotolerant fungus Phanerochaete chrysosporium grown in vinasse. I. Production and composition. Nutr. Rep. Int. 24: 237–247.

    Google Scholar 

  • Cardoso, M. B. 1981b. Single cell protein from the thermotolerant fungus Phanerochaete chrysosporium grown in vinasse. II. Nutritive value. Nutr. Rep. Int. 24: 249–255.

    Google Scholar 

  • Chandan, R. C. 1982. “Other Fermented Dairy Products.” In Prescott andDunn’s Industrial Microbiology. G. Reed, ed. Westport, Conn.: AVI Publishing Co.

    Google Scholar 

  • Chang, S. T. 1980. Mushrooms as human food. BioScience 30: 399–401.

    CAS  Google Scholar 

  • Clarke, B. J. 1986. Hop products. J. Inst. Brew. 92: 123–130.

    Google Scholar 

  • Clementi, F.; Moresi, M.; and Rossi, J. 1985. Effect of medium composition on microbial utilisation of citrus waste by mixed fungal culture. Appl. Microbiol. Biotechnol. 22: 2631.

    Article  Google Scholar 

  • Coghill, D. 1979. The ripening of blue vein cheese: A review. Aust. J. Dairy Technol. 34: 72–75.

    CAS  Google Scholar 

  • Cooney, C. L.; Levine, D. W.; and Snedecor, B. 1975. Production of single-cell protein from methanol. Food Technol. 29(2): 33, 36, 38, 40, 42.

    Google Scholar 

  • Cooney, C. L., and Makiguchi, N. 1977. An assessment of single cell protein from methanol-grown yeast. Biotechnol. Bioeng. Symp. No. 7, 65–76.

    CAS  Google Scholar 

  • Costilow, R. N.; Gates, K.; and Lacy M. L. 1980. Molds in brined cucumbers: cause of softening during air-purging of fermentations. Appl. Environ. Microbiol. 40: 417–422.

    CAS  Google Scholar 

  • Cuer, A.; Dauphin, G.; Kergomard, A.; Dumont, J. P.; and Adda, J. 1979. Production of Smethylthioacetate by Brevibacterium linens. Appi. Environ. Microbiol. 38: 332–334.

    CAS  Google Scholar 

  • Daeschel, M. A., and Fleming, H. P. 1981. Entrance and growth of lactic acid bacteria in gas-exchanged, brined cucumbers. Appl. Environ. Microbiol. 42: 1111–1118.

    CAS  Google Scholar 

  • Daly, N. M.; Lee, T. H.; and Fleet, G. H. 1984. Growth of fungi on wine corks and its contribution to corky taints in wine. Food Technol. Aust. 36: 22–24.

    Google Scholar 

  • Davis, C. R.; Wibowo, D. J.; Lee, T. H.; and Fleet, G. H. 1986. Growth and metabolism of lactic acid bacteria during and after malolactic fermentation of wines at different pH. Appl. Environ. Microbiol. 51: 539–545.

    CAS  Google Scholar 

  • de Groot, A. P.; Dreef-van der Meulen, H. C.; Til, H. P.; and Feron, V. J. 1975. Safety evaluation of yeast grown on hydrocarbons. IV. Two-year feeding and multigeneration study in rats with yeast grown on pure n-paraffins. Food Cosmet. Toxicol. 13: 619–627.

    Article  Google Scholar 

  • Delcour, J. A.; Caers, J. M.; Dondeyne, P.; Delvaux, F.; and Robberechts, E. 1982. An enzymatic assay for the determination of acetaldehyde in beers. J. Inst. Brew. 88: 384–386.

    CAS  Google Scholar 

  • Demain, A. L. 1971. Microbial production of food additives. Symposia Soc. Gen. Microbiol. 21: 77–101.

    CAS  Google Scholar 

  • Dijkhuizen, L.; Hansen, T. A.; and Harder, W. 1985. Methanol, a potential feedstock for biotechnological processes. Trends Biotechnol. 3: 262–267.

    Article  CAS  Google Scholar 

  • D’Mello, J. P. F., and Acamovic, T. 1976. Evaluation of methanol-grown bacteria as a source of protein and energy for young chicks. Brit. Poultry Sci. 17: 393–401.

    Article  Google Scholar 

  • Dolezil, L., and Kirsop, B. H. 1980. Variations amongst beers and lactic acid bacteria relating to beer spoilage.]. Inst. Brew. 86: 122–124.

    CAS  Google Scholar 

  • Driessen, F. M.; Ubbels, J.; and Stadhouders, J. 1977. Continuous manufacture of yogurt. I. Optimal conditions and kinetics of the prefermentation process. Biotechnol. Bioeng. 19: 821–839.

    Article  CAS  Google Scholar 

  • Drysdale, G. S., and Fleet, G. H. 1985. Acetic acid bacteria in some Australian wines. Food Technol. Aust. 37: 17–20.

    CAS  Google Scholar 

  • DuBois, D. K. 1981. Fermented doughs. Cereal Foods World 26: 617–619, 621–622.

    Google Scholar 

  • Edinger, W. D., and Splittstoesser, D. F. 1986. Production by lactic acid bacteria of sorbicalcohol, the precursor of the geranium odor compound. Amer.]. Enol. Vitic. 37: 34–38.

    CAS  Google Scholar 

  • Einarsson, H., and Snygg, B. G. 1986. Niacin assay by monitoring changes in electrical conductance caused by microbial growth. J. Appi. Bacteriol. 60: 15–19.

    Article  CAS  Google Scholar 

  • El Soda, M. 1986. Acceleration of cheese ripening: Recent advances.]. Food Prot. 49: 395399.

    Google Scholar 

  • Endo, H.; Nakajima, K.; Chino, R.; and Shirota, M. 1974. Growth characteristics and cellular components of Chlorella regularis, heterotrophic fast growing strain. Agr. Biol. Chem. 38: 9–18.

    Article  Google Scholar 

  • Eschenbruch, R.; Cresswell, K. J.; Fisher, B. M.; and Thornton, R. H. 1982. Selective hybridisation of pure culture wine yeasts. 1. Elimination of undesirable wine-making properties. Eur. J. Appi. Microbiol. Biotechnol. 14: 155–158.

    Article  Google Scholar 

  • Etchells, J. L.; Fleming, H. P.; Hontz, L. H.; Bell, T. A.; and Monroe, R. J. 1975. Factors influencing bloater formation in brined cucumbers during controlled fermentation. J. Food Sci. 40: 569–575.

    Article  Google Scholar 

  • Fabregas, J., and Herrero, C. 1985. Marine microalgae as a potential source of single cell protein (SCP). Appi. Microbiol. Biotechnol. 23: 110–113.

    Article  CAS  Google Scholar 

  • Fadda, M. B.; Dessi, M. R.; Maurici, R.; Rinaldi, A.; and Satta, G. 1984. Highly efficient solubilization of natural lignocellulosic materials by a commercial cellulase immobilized on various solid supports. Appi. Microbiol. Biotechnol. 19: 306–311.

    Google Scholar 

  • Field, C. E.; Pivarnik, L. F.; Barnett, S. M.; and Rand, A. G., Jr. 1986. Utilization of glucose oxidase for extending the shelf-life of fish.]. Food Sci. 51: 66–70.

    Article  CAS  Google Scholar 

  • Fields, M. L.; Hoseney, R. C.; and Varriano-Marston, E. 1982. Microbiology of cracker sponge fermentation. Cereal Chem. 59: 23–26.

    Google Scholar 

  • Fleming, H. P.; Pharr, D. M.; and Thompson, R. L. 1980. Brining properties of cucumbers exposed to pure oxygen before brining. Food Sci. 45: 1578–1582.

    Article  CAS  Google Scholar 

  • Fleming, H. P.; Thompson, R. L.; Bell, T. A.; and Monroe, R. J. 1977. Effect of brine depth on physical properties of brine-stock cucumbers. Food Sci. 42: 1464–1470.

    Article  CAS  Google Scholar 

  • Fleming, H. P.; Thompson, R. L.; Etchells, J. L.; Kelling, R. E.; and Bell, T. A. 1973. Bloater formation in brined cucumbers fermented by Lactobacillus plantarum. J. Food Sci. 38: 499–503.

    Google Scholar 

  • Fowler, A. A., and Priestly, R. J. 1980. The evolution of panary fermentation and dough development-A review. Food Chem. 5: 283–301.

    Article  Google Scholar 

  • Fujita, Y.; Okamoto, T.; and Irie, R. 1984. Plasmid distribution in lactic streptococci. Agr. Biol. Chem. 48: 1895–1898.

    Article  CAS  Google Scholar 

  • Fukui, S., and Tanaka, A. 1982. Immobilized microbial cells. Ann. Rev. Microbiol. 36: 145–172.

    Article  CAS  Google Scholar 

  • Fukushima, D. 1985. Fermented vegetable protein and related foods ofJapan and China. Food Re - o. Int. 1: 149–209.

    Article  CAS  Google Scholar 

  • Gates, K., and Costilow, R. N. 1981. Factors influencing softening of salt-stock pickles in air-purged fermentation.]. Food Sci. 46: 274–277, 282.

    Google Scholar 

  • Ghommidh, C.; Cutayar, J. M.; and Navarro, J. M. 1986. Continuous production of vinegar. 1. Research strategy. Biotechnol. Lett. 8: 13–18.

    Article  CAS  Google Scholar 

  • Gierhart, D. L., and Potter, N. N. 1978. Effects of ribonucleic acid removal methods on composition and functional properties of Candida utilis. J. Food Sci. 43: 1705–1713.

    Article  CAS  Google Scholar 

  • Gilles, J.; Turner, K. W.; and Martley, F. G. 1983. Swiss-type cheese. 1. Manufacturing and sampling procedures. New Zealand J. Dairy Sci. Technol. 18: 109–115.

    CAS  Google Scholar 

  • Godtfredsen, S. E.; Rasmussen, A. M.; Otteson, M.; Mathiasen, T.; and Ahrenst-Larsen, B. 1984. Application of the acetolactate decarboxylase from Lactobacillus casei for accelerated maturation of beer. Carlsberg Res. Commun. 49: 69–74.

    Article  CAS  Google Scholar 

  • Green, M. L. 1985. Effect of milk pretreatment and making conditions on the properties of Cheddar cheese from milk concentrated by ultrafiltration. J. Dairy Res. 52: 555–564.

    Article  Google Scholar 

  • Gregory, J. F., III. 1983. Methods of vitamin assay for nutritional evaluation of food processing. Food Technol. 37: 75–80.

    CAS  Google Scholar 

  • Griffin, H. L.; Sloneker, J. H.; and Inglett, G. E. 1974. Cellulase production by Trichoderma viride on feedlot waste. Appl. Microbiol. 27: 1061–1066.

    CAS  Google Scholar 

  • Grobbelaar, J. U. 1979. Observations on the mass culture of algae as a potential source of food. So. Afr. J Sci. 75: 133–136.

    Google Scholar 

  • Guilarte, T. R. 1983. Radiometric microbiological assay of vitamin B6: Assay simplification and sensitivity study. J. Assoc. Offic. Anal. Chem. 66: 58–61.

    CAS  Google Scholar 

  • Hammond, J. R. M., and Eckersley, K. W. 1984. Fermentation properties of brewing yeast with killer character./ Inst. Brew. 90: 167–177.

    CAS  Google Scholar 

  • Han, Y. W. 1975. Microbial fermentation of rice straw: Nutritive composition and in vitro digestibility of the fermentation products. Appl. Microbiol. 29: 510–514.

    CAS  Google Scholar 

  • Han, Y. W., and Anderson, A. W. 1975. Semisolid fermentation of ryegrass straw. Appl. Microbiol. 30: 930–934.

    CAS  Google Scholar 

  • Han, Y. W., and Callihan, C. D. 1974. Cellulose fermentation: Effect of substrate pretreatment on microbial growth. Appl. Microbial. 27: 159–165.

    CAS  Google Scholar 

  • Hara, S.; Iimura, Y.; and Otsuka, K. 1980. Breeding of useful killer wine yeasts. Amer. J. Enol. Vitic. 31: 28–33.

    Google Scholar 

  • Harper, W. J., and Seiberling, D. A. 1976. “Continuous and Automated Processes.” In Dairy Technology and Engineering. W. J. Harper and C. W. Hale, eds. Westport, Conn.: AVI Publishing Co., Inc.

    Google Scholar 

  • Harrison, J. S. 1970. “Miscellaneous Products from Yeast.” In The Yeasts. Vol. 3. Yeast Technology. A. H. Rose and J. S. Harrison, eds. London and New York: Academic Press.

    Google Scholar 

  • Hasegawa, S.; Patel, M. N.; and Snyder, R. C. 1982. Reduction of limonin bitterness in navel orange juice serum with bacterial cells immobilized in acrylamide gel. J. Agr. Food Chem. 30: 509–511.

    Article  CAS  Google Scholar 

  • Hasegawa, S., Vandercook, C. E.; Choi, G. Y.; Herman, Z.; and Ou, P. 1985. Limonoid debittering of citrus juice sera by immobilized cells of Corynebacterium fascians. J. Food Sci. 50: 330–332.

    Article  CAS  Google Scholar 

  • Hausser, A. G.; Goldberg, B. S.; and Mertens, J. L. 1983. An immobilized two-enzyme system (fungal a-amylaselglucoamylase) and its use in the continuous production of high conversion maltose-containing corn syrups. Biotechnol. Bioeng. 25: 525–539.

    Article  CAS  Google Scholar 

  • Hawke, S. J.; Panter, C.; Hayes, M.; and Nguyen, M. H. 1983. Selection of yeasts for fer- mentation of sweet sorghum juice to alcohol. Food Technol. Aust. 35 (3): 123–125.

    CAS  Google Scholar 

  • Hayakawa, I., and Nomura, D. 1978. Effect of surfactants on spinnability and rheological properties of single cell protein (SCP). Agr. Biol. Chem. 42: 17–23.

    Article  CAS  Google Scholar 

  • Helbert, J. R. 1982. “Beer.” In Prescott and Dunn’s Industrial Microbiology. G. Reed, ed. Westport, Conn.: AVI Publishing Co., Inc.

    Google Scholar 

  • Hinchliffe, E. 1985. ß-glucanase: The successful application of genetic engineering. J. Inst. Brew. 91: 384–389.

    CAS  Google Scholar 

  • Honer, C., and Horwich, A. 1983. Cheese and ultrafiltration: Where are we today? Dairy Rec. 84 (8): 80–82.

    Google Scholar 

  • Hopkins, T. R. 1985. A multipurpose enzyme sensor based on alcohol oxidase. Amer. Biotechnol. Lab. 3 (5): 32–35.

    CAS  Google Scholar 

  • Hopwood, D. A. 1981. The genetic programming of industrial microorganisms. Sci. Amer. 245 (3): 90–102.

    Article  CAS  Google Scholar 

  • Huang, F., and Rha, C. 1978. Formation of single-cell protein filament with hydrocolloids. J. Food Sci. 43: 780–782, 786.

    Google Scholar 

  • Hudson, J. M., and Buescher, R. W. 1986. Relationship between degree of pectin methylation and tissue firmness of cucumber pickles. J. Food Sci. 51: 138–140, 149. Hudson, O. P. 1986. Malting technology./ Inst. Brew. 92: 115–122.

    Google Scholar 

  • Ikeda,. T.; Hamada, H.; Miki, K.; and Senda, M. 1985. Glucose oxidase-immobilized benzoquinone-carbon paste electrode as a glucose sensor. Agr. Biol. Chem. 49: 541–543.

    Article  Google Scholar 

  • Imai, K.; Shiomi, T.; Uchida, K.; and Miya, M. 1986. Immobilization of enzyme onto poly (ethylene-vinyl alcohol) membrane. Biotechnol. Bioeng. 28: 198–203.

    Article  CAS  Google Scholar 

  • Inloes, D. S.; Smith, W. J.; Taylor, D. P.;Cohen, S. N.; Michaels, A. S.; and Robertson, C. R. 1983. Hollow-fiber membrane bioreactors using immobilized E. coli for protein synthesis. Biotechnol. Bioeng. 25: 2653–2681.

    Article  CAS  Google Scholar 

  • Ishii, S., and Yokotsuka, T. 1973. Susceptibility of fruit juice to enzymatic clarification by pectin lyase and its relation to pectin in fruit juice. J. Agr. Food Chem. 21: 269–272.

    Article  CAS  Google Scholar 

  • Jackson, J. A., and Conrad, M. E. 1985. Technical aspects of urine dipstick reagent areas. Amer. Clin. Prod. Rev. 4 (12): 10–19.

    Google Scholar 

  • Jara, P.; Allais, J. J.; and Baratti, J. 1983. Isolation and characterization of a methanol utilizing yeast with high cell yield. Eur. J. Appi. Microbiol. Biotechnol. 17: 19–23.

    Article  CAS  Google Scholar 

  • Johansen, A., and Flink, J. M. 1986. Immobilization of yeast cells by internal gelation of alginate. Enz. Microb. Technol. 8: 145–148.

    Article  CAS  Google Scholar 

  • Jolly, R., and Kosikowski, F. V. 1975. Blue cheese flavor by microbial lipases and mold spores utilizing whey powder, butter, and coconut fats./ Food Sci. 40: 285–287.

    Article  CAS  Google Scholar 

  • Jones, R. S., and Ough, C. S. 1985. Variations in the percent ethanol (v/v) per °Brix conversions of wines from different climatic regions. Amer. J. Enol. Vitic. 36: 268–270.

    CAS  Google Scholar 

  • Joyeux, A.; Lafon-Lafourcade, S.; and Ribéreau-Gayon, P. 1984. Evolution of acetic acid bacteria during fermentation and storage of wine. Appl. Environ. Microbiol. 48: 153156.

    Google Scholar 

  • Kaneko, T.; Ohmori, S.; and Masai, H. 1973. An improved method for the discrimination between biogenic and synthetic acetic acid with a liquid scintillation counter./ Food Sci 38: 350–353.

    Article  CAS  Google Scholar 

  • Karahadian, C.; Josephson, D. B.; and Lindsay, R. C. 1985. Volatile compounds from Penicillium sp. contributing musty-earthy notes to brie and camembert cheese flavors./ Agr. Food Chem. 33: 339–343.

    Article  CAS  Google Scholar 

  • Kargi, F.; Shuler, M. L.; Vashon, R.; Seeley, H. W.; Henry, A.; and Austic, R. E. 1980. Continuous aerobic conversion of poultry waste into single-cell protein using a single reactor: Kinetic analysis and determination of optimal conditions. Biotechnol. Bioeng. 22: 1567–1600.

    Article  CAS  Google Scholar 

  • Karube, I.; Satoh, I.; Araki, Y.; Suzuki, S.; and Yamada, H. 1980. Monoamine oxidase electrode in freshness testing of meat. Enz. Microb. Technol. 2: 117–120.

    Article  CAS  Google Scholar 

  • Kealey, K. S., and Kosikowski, F. V. 1985. Cheddar cheese from ultrafiltered whole milk retentates in industrial cheese making. Dairy Sci. 68: 3148–3154.

    Article  CAS  Google Scholar 

  • Kilara, A. 1985a. Enzyme-modified lipid food ingredients. Process Biochem. 20(2): 36–46. 1985b. Enzyme-modified protein food ingredients. Process Biochem. 20 (5): 149–158.

    CAS  Google Scholar 

  • King, P. P. 1982. Biotechnology. An industrial view. Chem. Technol. Biotechnol. 32: 2–8. Kingdon, C. F. M. 1985. An aminoglycoside biosensor incorporating free or immobilized bacterial cells. Appl. Microbiol. Biotechnol. 22: 165–168.

    Google Scholar 

  • Kinsella, J. E., and Hwang, D. 1976. Biosynthesis of flavors by Penicillium roqueforti. Biotechnol. Bioeng. 18: 927–938.

    Article  CAS  Google Scholar 

  • Kline, L., and Sugihara, T. F. 1971. Microorganism of the San Francisco sour dough bread process. II. Isolation and characterization of undescribed bacterial species responsible for the souring activity. Appi. Microbiol. 21: 459–465.

    CAS  Google Scholar 

  • Knorr, D.; Shetty, K. J.; Hood, L. F.; and Kinsella, J. E. 1979. An enzymatic method for yeast autolysis. J. Food Sci. 44: 1362–1365.

    Article  CAS  Google Scholar 

  • Kodama, K. 1970. “Saké Yeast.” In The Yeasts. Vol. 3. Yeast Technology. A. H. Rose and J. S. Harrison, eds. London and New York: Academic Press.

    Google Scholar 

  • Kosikowski, F. V. 1985. Cheese. Sci. Amer. 252(5): 88–92, 97–99.

    Google Scholar 

  • Kosikowski, F. V. 1986. New cheese-making procedures utilizing ultrafiltration. Food Technol. 40(6): 71–77, 156.

    Google Scholar 

  • Kosikowski, F. V.; Masters, A. R.; and Mistry, V. V. 1985. Cottage cheese from retentatesupplemented skim milk. J. Dairy Sci. 68: 541–547.

    Article  CAS  Google Scholar 

  • Kunkee, R. E., and Amerine, M. A. 1970. “Yeasts in Wine-Making.” In The Yeasts. Vol. 3. Yeast Technology. A. H. Rose and J. S. Harrison, eds. London and New York: Academic Press.

    Google Scholar 

  • Laluce, C., and Mattoon, J. R. 1984. Development of rapidly fermenting strains of Saccharomyces diastaticus for direct conversion of starch and dextrins to ethanol. Appi. Environ. Microbiol. 48: 17–25.

    CAS  Google Scholar 

  • Laskin, A. I. 1977. Ethanol as a substrate for single cell protein production. Biotechnol. Bioeng. 7: 91–103.

    CAS  Google Scholar 

  • Law, B. A., and Wigmore, A. S. 1983. Accelerated ripening of Cheddar cheese with a commercial proteinase and intracellular enzymes from starter streptococci. J. Dairy Sci. 50: 519–525.

    CAS  Google Scholar 

  • Lawrence, R. C.; Heap, H. A.; and Gilles, J. 1984. A controlled approach to cheese technology. J. Dairy Sci. 67: 1632–1645.

    Article  CAS  Google Scholar 

  • Lelieveld, H. L. M. 1984. Mixed-strain continuous milk fermentation. Proc. Biochem 19 (3): 112–113.

    CAS  Google Scholar 

  • Liebich, H. M.; Douglas, D. R.; Bayer, E.; and Zlatkis, A. 1970. The volatile flavor components of Cheddar cheese. J. Chromatogr. Sci. 8: 355–359.

    CAS  Google Scholar 

  • Lin, J. C.; Chastain, M. E; and Strength, D. R. 1986. Sensory and nutritional evaluation of wheat bread supplemented with single cell protein from torula yeast (Candida utilis). J. Food Sci. 51: 647–651.

    Article  Google Scholar 

  • Lipinsky, E. S., and Litchfield, J. H. 1974. Single-cell protein in perspective. Food Technol. 28(5): 16, 18, 20, 22, 24, 40.

    Google Scholar 

  • Litchfield, J. H. 1977. Single-cell proteins. Food Technol. 31 (5): 175–179.

    Google Scholar 

  • Litchfield, J. H. 1980. Microbial protein production. BioScience 30: 387–396.

    CAS  Google Scholar 

  • Litchfield, J. H. 1983. Single-cell proteins. Science 219: 740–746.

    Article  CAS  Google Scholar 

  • Löffler, A. 1986. Proteolytic enzymes: Sources and applications. Food Technol. 40: 63–70. MacBean, R. D.; Hall, R. J.; and Linklater, P. M. 1979. Analysis of pH-stat continuous cultivation and the stability of the mixed fermentation in continuous yogurt production. Biotechnol. Bioeng. 21: 1517–1541.

    Google Scholar 

  • McCord, J. D., and Ryu, D. D. Y. 1985. Development of malolactic fermentation processusing immobilized whole cells and enzymes. Amer. J. Enol. Vitic. 36: 214–218.

    CAS  Google Scholar 

  • McFeeters, R. F.; Fleming, H. P.; and Daeschel, M. A. 1984. Malic acid degradation and brined cucumber bloating. J. Food Sci. 49: 999–1002.

    Article  CAS  Google Scholar 

  • McFeeters, R. F.; Fleming, H. P.; and Thompson, R. L. 1982. Malic acid as a source of carbon dioxide in cucumber juice fermentations. J. Food Sci. 47: 1862–1865.

    Article  CAS  Google Scholar 

  • McFeeters, R. F.;1985. Pectinesterase activity, pectin methylation, and texture changes during storage of blanched cucumber slices. J. Food Sci. 50: 201–205, 219.

    Google Scholar 

  • McGugan, W. A.; Emmons, D. B.; and Larmond, E. 1979. Influence of volatile and nonvolatile fractions on intensity of Cheddar cheese flavor. J. Dairy Sci. 62: 398–403.

    Article  CAS  Google Scholar 

  • McMahon, D. J., and Brown, R.J. 1984. Enzymic coagulation of casein micelles: A review. J. Dairy Sci. 67: 919–929.

    Article  CAS  Google Scholar 

  • Macmillan, J. D., and Phaff, H.J. 1973. “Yeasts. General Survey.” In Handbook of Microbiology. Vol. I. Organismic Microbiology. A. I. Laskin and H. A. Lechevalier, eds. Cleveland, Ohio: CRC Press.

    Google Scholar 

  • McMurrough, I., and Palmer, V. 1979. Lactic acid production in sweet worts. J. Inst. Brew. 85: 11–14.

    CAS  Google Scholar 

  • Mann, D. L. 1986. Milling and baking in Scotland. Proc. Roy. Soc. Edinburgh 87B: 241–254.

    Google Scholar 

  • Marsili, R. T. 1981. Monitoring bacterial metabolites in cultured buttermilk by high performance liquid chromatography and headspace gas chromatography. J. Chromatogr. Sci. 19: 451–456.

    CAS  Google Scholar 

  • Martin, A. M., and White, M. D. 1985. Growth of the acid-tolerant fungus Scytalidium acidophilum as a potential source of single-cell protein. Food Sci. 50: 197–200.

    Article  Google Scholar 

  • Martini, A. E. V.; Miller, M. W.; and Martini, A. 1979. Amino acid composition of whole cells of different yeasts. J. Agr. Food. Chem. 27: 982–984.

    Article  CAS  Google Scholar 

  • Mason, M. 1983. Ethanol determination in wine with an immobilized enzyme electrode. Amer. J. Enol. Vitic. 34: 173–175.

    CAS  Google Scholar 

  • Meilgaard, M. C. 1982. Prediction of flavor differences between beers from their chemical composition./ Agr. Food Chem. 30: 1009–1017.

    Article  CAS  Google Scholar 

  • Meyer, O. 1980. Using carbon monoxide to produce single-cell protein. BioScience 30: 405–407.

    CAS  Google Scholar 

  • Molina, O. E.; Perotti deGâlvez, N. I.; Frigerio, C. I.; and Córdoba, P. R. 1984. Single cell protein production from bagasse pith pretreated with sodium hydroxide at room temperature. Appi. Microbiol. Biotechnol. 20: 335–339.

    Article  CAS  Google Scholar 

  • Monroe, R. J.; Etchells, J. L.; Pacilio, J. C.; Borg, A. F.; Wallace, D. H.; Rogers, M. P.; Turney, L. J.; and Schoene, E. S. 1969. Influence of various acidities and pasteurizing temperatures on the keeping quality of fresh-pack dill pickles. Food Technol. 23: 71–78.

    CAS  Google Scholar 

  • Moon, N. J., and Reinhold, G. W. 1976. Commensalism and competition in mixed cultures of Lactobacillus bulgaricus and Streptococcus thermophilus. J. Milk Food Technol. 39: 337–341.

    Google Scholar 

  • Mueller, D. L.; Reed, S. J.; and Barkate, J. A. 1979. Rapid automated turbidimetric assay for chlortetracycline hydrochloride, using Leuconostoc mesenteroides as the test organism. J. Assoc. Offic. Anal. Chem. 62: 160–167.

    CAS  Google Scholar 

  • Nakamatsu, T.; Akamatsu, T.; Miyajima, R.; and Shiio, I. 1975. Microbial production of glucose oxidase. Agr. Biol. Chem. 39: 1803–1811.

    Article  CAS  Google Scholar 

  • Nunomura, N.; Susaki, M.; Asao, Y.; and Yokotsuka, T. 1976a. Identification of volatile components in shoyu (soy sauce) by gas chromatography-mass spectrometry. Agr. Biol. Chem. 40: 485–490.

    Article  CAS  Google Scholar 

  • Nunomura, N. 1976b. Isolation and identification of 4-hydroxy-2(or 5)-ethyl-5(or 2)-methyl-3(2H)-furanone, as a flavor component in shoyu (soy sauce). Agr. Biol. Chem. 40: 491–495.

    Article  CAS  Google Scholar 

  • Nunomura, N.; Sasaki, M.; and Yokotsuka, T. 1984. Shoyu (soy sauce) flavor components: Neutral fraction. Agr. Biol. Chem. 48: 1753–1762.

    CAS  Google Scholar 

  • Okuhara, A. 1985. Vinegar production with Acetobacter grown on a fibrous support. J. Ferment. Technol. 63: 57–60.

    CAS  Google Scholar 

  • Orberg, P. K., and Sandine, W. E. 1985. Plasmid linkage of proteinase and lactose fermentation in Streptococcus lactis NCDO 1404. J. Dairy Sci. 68: 572–580.

    Article  CAS  Google Scholar 

  • Osaki, K.; Okamoto, Y.; Akao, T.; Nagata, S.; and Takamatsu, H. 1985. Fermentation of soy sauce with immobilized whole cells. J. Food Sci. 50: 1289–1292.

    Article  CAS  Google Scholar 

  • Panchal, C. J.; Russell, I.; Sills, A. M.; and Stewart, G. G. 1984. Genetic manipulation of brewing and related yeast strains. Food Technol. 38(2): 99–106, 111.

    Google Scholar 

  • Parliment, T. H.; Kolor, M. G.; and Rizzo, D. J. 1982. Volatile components of limburger cheese./ Agr. Food Chem. 30: 1006–1008.

    Article  CAS  Google Scholar 

  • Patel, I. B., and Vaughn, R. H. 1973. Cellulolytic bacteria associated with sloughing spoilage of California ripe olives. Appi. Microbiol. 25: 62–69.

    CAS  Google Scholar 

  • Pavlostathis, S. G., and Gossett, J. M. 1985. Modeling alkali consumption and digestibility improvement from alkaline treatment of wheat straw. Biotechnol. Bioeng. 27: 345–354.

    Article  CAS  Google Scholar 

  • Pederson, C. S. 1979. Microbiology of Food Fermentations. 2d ed. Westport, Conn.: AVI Publishing Company.

    Google Scholar 

  • Peitersen, N. 1975a. Production of cellulase and protein from barley straw by Trichoderma viride. Biotechnol. Bioeng. 17: 361–374.

    Article  CAS  Google Scholar 

  • Peitersen, N. 1975b. Cellulase and protein production from mixed cultures of Trichoderma viride and a yeast. Biotechnol. Bioeng. 17: 1291–1299.

    Article  CAS  Google Scholar 

  • Ponte, J. G., Jr.; and Reed, G. 1982. “Bakery Foods.” In Prescott andDunn’s Industrial Microbiology. 4th ed. G. Reed, ed. Westport, Conn.: AVI Publishing Co, Inc.

    Google Scholar 

  • Potts, E. A., and Fleming, H. P. 1982. Prevention of mold-induced softening in air-purged, brined cucumbers by acidification. J. Food Sci. 47: 1723–1727.

    Article  Google Scholar 

  • Prevost, H.; Divies, C.; and Rousseau, E. 1985. Continuous yoghurt production with Lactobacillus bulgaricus and Streptococcus thermophilus entrapped in Ca-alginate. Biotechnol. Lett. 7: 247–252.

    Article  CAS  Google Scholar 

  • Radke-Mitchell, L., and Sandine, W. E. 1984. Associative growth and differential enumeration of Streptococcus thermophilus and Lactobacillus bulgaricus: A review./ Food Prot 47: 245–248.

    Google Scholar 

  • Rajkowski, K. T.; Peeler, J. T.; and Messer, J. W. 1986. Detectability levels of four betalactam antibiotics in eight milk products using the AOAC Bacillus stearothermophilus disc assay./ Food Prot. 49: 687–690.

    CAS  Google Scholar 

  • Rale, V. B. 1984. SCP from pineapple (Ananas sativa Schutt) cannery effluents. Eur. J Appi. Microbiol. Biotechnol. 19: 106–109.

    Article  CAS  Google Scholar 

  • Rao, P. V., and Hahn, S. K. 1984. An automated enzymic assay for determining the cyanide content of cassava (Manihot esculenta Crantz) and cassava products. J. Sci. Food Agr. 35: 426–436.

    CAS  Google Scholar 

  • Rash, K. E., and Kosikowski, F. V. 1982. Influence of lactic acid starter bacteria on enteropathogenic Escherichia coli in ultrafiltration prepared Camembert cheese./ Dairy Sci. 65: 537–543.

    Google Scholar 

  • Rathlev, T.; Hocko, J. M.; Franks, G. F.; Suffin, S. C.; O’Donnell, C. M.; and Porter, D. D. 1981. Glucose oxidase immunoenzyme methodology as a substitute for fluorescence microscopy in the clinical laboratory. Clin. Chem. 27: 1513–1515.

    CAS  Google Scholar 

  • Reed, G. 1981. Use of microbial cultures: Yeast products. Food Technol. 35: 89–94.

    Google Scholar 

  • Reed, G. 1982. Prescott andDunn’s Industrial Microbiology. 4th ed. Westport, Conn.: AVI Publish- ing Co., Inc.

    Google Scholar 

  • Reeves, G. W. 1983. Wine filtration in the bottling cellar. Food Technol. Aust. 35: 28–33. Renneberg, R.; Riedel, K.; and Scheller, E 1985. Microbial sensor for aspartame. App. Microbiol. Biotechnol. 21: 180–181.

    Google Scholar 

  • Ridha, S. H.; Crawford, R. J. M.; and Tamime, A. Y. 1984. Comparative studies of casein breakdown in Cheddar cheese manufactured from lactose-hydrolysed milk. J. Food Prot. 47: 381–387.

    CAS  Google Scholar 

  • Romano, P.; Soli, M. G.; Suzzi, G.; Grazia, L.; and Zambonelli, C. 1985. Improvement of a wine Saccharomyces cerevisiae strain by a breeding program. Appi. Environ. Microbiol. 50: 1064–1067.

    CAS  Google Scholar 

  • Rosini, G.; Federici, F.; Vaughn, A. E.; and Martini, A. 1982. Systematics of the species of the yeast genus Saccharomyces associated with the fermentation industry. Eur. J. Appl. Microbiol. Biotechnol. 15: 188–193.

    Article  Google Scholar 

  • Roy, R. B. 1979. An improved semiautomated enzymatic assay of lysine in foodstuffs. J. Food Sci. 44: 480–482, 487.

    Google Scholar 

  • Russell, I.; Crumplen, C. M.; Jones, R. M.; and Stewart, G. G. 1986. Efficiency of genetically engineered yeast in the production of ethanol from dextrinized cassava starch. Biotechnol. Lett. 8: 169–174.

    Article  CAS  Google Scholar 

  • Ryther, J. H., and Goldman, J. C. 1975. Microbes as food in mariculture Annu. Rev. Microbiol. 29: 429–443.

    Article  CAS  Google Scholar 

  • Saddler, J. N. 1986. Factors limiting the efficiency of cellulase enzymes. Microbiol. Sci. 3 (3): 84–87.

    CAS  Google Scholar 

  • Samish, Z.; Cohen, S.; and Ludin, A. 1968. Progress of lactic acid fermentation of green olives as affected by peel. Food Technol. 22: 1009–1012.

    CAS  Google Scholar 

  • Sarwar, G.; Shah, B. G.; Mongeau, R., and Hoppner, K. 1985. Nucleic acid, fiber and nutrient composition of inactive dried food yeast products. J. Food Sci. 50: 353–357.

    Article  CAS  Google Scholar 

  • Scanlan, R. A.; Barbour, J. F.; Hotchkiss, J. H.; and Libbey, L. M. 1980. N-nitrosodimethylamine in beer. Food Cosmet. Toxicol. 18: 27–29.

    Article  CAS  Google Scholar 

  • Scherwitz, K. M.; Baldwin, K. A.; and McKay, L. L. 1983. Plasmid linkage of a bacteriocinlike substance in Streptococcus lactis subsp. diacetylactis strain WM4: Transferability to Streptococcus lactis. App. Environ. Microbiol. 45: 1506–1512.

    CAS  Google Scholar 

  • Schwimmer, S. 1981. Source Book of Food Enzymology. Westport, Conn.: AVI Publishing Co., Inc.

    Google Scholar 

  • Scott, R. S.; Anders, T. G.; and Hums, N. 1981. Rapid cold stabilization of wine by filtration. Amer. J. Enol. Vitic. 32: 138–143.

    Google Scholar 

  • Seager, M. S.; Banks, J. G.; Blackburn, C. W.; and Board, R. G. 1986. A taxonomic study of Staphylococcus spp. isolated from fermented sausages. J. Food Sci. 51: 295–297.

    Article  Google Scholar 

  • Seiling, S. 1969. Equipment demands of changing production requirements. Bakers Dig. 45 (5): 54–59.

    Google Scholar 

  • Seki, T.; Choi, E.; and Ryu, D. 1985. Construction of killer wine yeast strain. App. Environ. Microbiol. 49: 1211–1215.

    CAS  Google Scholar 

  • Sellars, R. L. 1981. Fermented dairy foods. J. Dairy Sci. 64: 1070–1076.

    Article  Google Scholar 

  • Shacklady, C. A. 1972. “Nutritional Qualities of Single-Cell Proteins.” In Health and Food. G. G. Birch, L. F. Green, and L. G. Plaskett, eds., London: Applied Science Publishers.

    Google Scholar 

  • Shannon, D. W. E; McNab, J. M., and Anderson, G. B. 1976. Use of an n-paraffin-grown yeast in diets for replacement pullets and laying hens. J. Sci. Food Agr. 27: 471–476.

    Article  Google Scholar 

  • Sharma, H. S.; Bassette, R.; Mehta, R. S.; and Dayton, A. D. 1980. Yield and curd characteristics of cottage cheese made by the culture and direct-acid-set methods. J. Food Prot. 43: 441–446.

    Google Scholar 

  • Sharpe, F. R., and Laws, D. R. J. 1981. The essential oil of hops. J. Inst. Brew. 87: 96–107. Shay, L. K., and Wegner, G. H. 1986. Nonpolluting conversion of whey permeate to food yeast protein. J. Dairy Sci. 69: 676–683.

    Google Scholar 

  • Shen, C. J.; Chen, I. S.; and Sheppard, A. J. 1982. Enzymatic determination of cholesterol in egg yolk. J. Assoc. Offic. Anal. Chem. 65: 1222–1224.

    CAS  Google Scholar 

  • Shetty, K.J., and Kinsella, J. E. 1979. Preparation of yeast protein isolate with low nucleic acid by succinylation. J. Food Sci. 44: 633–638.

    Article  CAS  Google Scholar 

  • Shilo, M. 1967. Formation and mode of action of algal toxins. Bacteriol. Rev. 31: 180–193.

    CAS  Google Scholar 

  • Shimizu, K.; Adachi, T.; Kitano, K.; Shimazaki, T.; Totsuka, A.; Hara, S.; and Dittrich, H. H. 1985. Killer properties of wine yeasts and characterization of killer wine yeasts. J. Ferment. Technol. 63: 421–429.

    Google Scholar 

  • Simpson, R. F.; Bennett, S. B.; and Miller, G. C. 1983. Oxidative pinking of white wines: A note on the influence of sulphur dioxide and ascorbic acid. Food Technol. Aust. 35: 34–37.

    CAS  Google Scholar 

  • Sinai, Y.; Kaplun, A.; Hai, Y.; and Halperin, B. 1974. Enhancement of resistance to infec- tious diseases by oral administration of brewer’s yeast. Infec. Immunity 9: 781–787.

    CAS  Google Scholar 

  • Sing, W. D., and Klaenhammer, T. R. 1986. Conjugal transfer of bacteriophage resistance determinants of pTR2030 into Streptococcus cremoris strains. App. Environ. Microbiol. 51: 1264–1271.

    CAS  Google Scholar 

  • Skrede, G. 1983. An enzymic method for the determination of starch in meat products. Food Chem. 11: 175–185.

    Article  CAS  Google Scholar 

  • Smith, J. L., and Palumbo, S. A. 1983. Use of starter cultures in meats. J. Food Prot. 46: 997–1006.

    Google Scholar 

  • Snow, R. 1985. Genetic engineering of a yeast strain for malolactic fermentation of wine. Food Technol. 39(10): 96–101, 109.

    Google Scholar 

  • Somers, T. C., and Ziemelis, G. 1985. Flavonol haze in white wines. Vitis 24: 43–50. Sood, V. K., and Kosikowski, F. V. 1979. Accelerated Cheddar cheese ripening by added microbial enzymes. J. Dairy Sci. 62: 1865–1872.

    Google Scholar 

  • Speck, M. L. 1981. Use of microbial cultures: Dairy products. Food Technol. 35 (1): 71–73.

    Google Scholar 

  • Spiegelhalder, B.; Eisenbrand, G.; and Preussmann, R. 1979. Contamination of beer with trace quantities of N-nitrosodimethylamine. Food Cosmet. Toxicol. 17: 29–31.

    Article  CAS  Google Scholar 

  • Sugihara, T. F.; Kline, L.; and Miller, M. W. 1971. Microorganisms of the San Francisco sour dough bread process. I. Yeasts responsible for the leavening action. Appi. Microbiol. 21: 456–458.

    Google Scholar 

  • Suzzi, G.; Romano, P.; and Zambonelli, C. 1985. Saccharomyces strain selection in minimizing SO2 requirement during vinification. Amer. J. Enol. Vitic. 36: 199–202.

    CAS  Google Scholar 

  • Tamime, A.Y., and Deeth, H. C. 1980. Yogurt: Technology and biochemistry. J. Food Prot. 43: 939–977.

    CAS  Google Scholar 

  • Taniguchi, M.; Kometani, Y.; Tanaka, M.; Matsuno, R.; and Kamikubo, T. 1982. Production of single-cell protein from enzymatic hydrolyzate of rice straw. Eur.J. Appi. Microbiol. Biotechnol. 14: 74–80.

    Google Scholar 

  • Teuber, M., and Lembke, J. 1983. The bacteriophages of lactic acid bacteria with emphasis on genetic aspects of group N lactic streptococci. Antonie van Leeuwenhoek 49: 283295.

    Google Scholar 

  • Thornton, R. J. 1983. New yeast strains from old-the application of genetics of wine yeasts. Food Technol. Aust. 35: 46–50.

    Google Scholar 

  • Thornton, R. J. 1985. The introduction of flocculation into a homothallic wine yeast. A practical example of the modification of winemaking properties by the use of genetic techniques. Amer. J Enol. Vitic. 36: 47–49.

    Google Scholar 

  • Tonogai, Y.; Kingkate, A.; Thanissorn, W.; and Punthanaprated, U. 1983. Enzymatic determination of L-glutamic acid (L-glutamate) in fish sauces and instant noodles. J Food Prot. 46: 522–524.

    Google Scholar 

  • Trivedi, N. B.; Cooper, E. J.; and Bruinsma, B. L. 1984. Development and applications of quick-rising yeast. Food Technol. 38: 51, 54–55, 57.

    Google Scholar 

  • Tuffnell, J. M., and Payne, J. W. 1985. A colorimetric enzyme assay using Escherichia coli to determine nutritionally available lysine in biological materials. J. App. Bacteriol. 58: 333–341.

    Google Scholar 

  • Umemura, I.; Takamatsu, S.; Sato, T.; Tosa, T.; and Chibata, I. 1984. Improvement of production of L-aspartic acid using immobilized microbial cells. Appt. Microbiol. Biotechnol. 20: 291–295.

    Google Scholar 

  • Van Der Walt, J. P. 1970. “Genus 16. Saccharomyces Meyen emend. Reess.” In The Yeasts. A Taxonomic Study. J. Lodder, ed. Amsterdam-London: North-Holland Publishing Company.

    Google Scholar 

  • Vaughn, R. H.; Jakubczyk, T.; MacMillan, J. D.; Higgins, T. E.; Dave, B. A.; and Crampton, V. M. 1969. Some pink yeasts associated with softening of olives. Appt. Microbiol. 18: 771–775.

    Google Scholar 

  • Vaughn, R. H.; Stevenson, K. E.; Dave, B. A.; and Park, H. C. 1972. Fermenting yeasts associated with softening and gas-pocket formation in olives. App. Microbiol. 23: 316320.

    Google Scholar 

  • Verzele, M. 1986. 100 years of hop chemistry and its relevance to brewing. J. Inst. Brew. 92: 32–48.

    Google Scholar 

  • Wada, M.; Uchida, T.; Kato, J.; and Chibata, I. 1980. Continuous production of L-isoleucine using immobilized growing Serratia marcescens cells. Biotechnol. Bioeng. 22: 1175 1188.

    Google Scholar 

  • Wainright, T. 1986. The chemistry of nitrosamine formation: Relevance to malting and brewing. J. Inst. Brew. 92: 49–64.

    CAS  Google Scholar 

  • Wainwright, T. 1986. Nitrosamines in malt and beer./ Inst. Brew. 92: 73–80.

    CAS  Google Scholar 

  • Waites, M. J., and Bamforth, C. W. 1984. The determination of ethanol in beer using a bioelectrochemical cell./ Inst. Brew. 90: 33–36.

    CAS  Google Scholar 

  • Walton, H. M., and Eastman, J. E. 1973. Insolubilized amylases. Biotechnol. Bioeng. 15: 951–962.

    Article  CAS  Google Scholar 

  • Wang, H. L., and Hesseltine, C. W. 1982. “Oriental Fermented Foods.” In Prescott and Dunn’s Industrial Microbiology. 4th ed. G. Reed, ed. Westport, Conn.: AVI Publishing Co., Inc.

    Google Scholar 

  • Waslien, C. I., and Steinkraus, K. H. 1980. The potential of microbial cells as protein for man. BioScience 30: 397–398.

    Google Scholar 

  • Wasserman, B. P. 1984. Thermostable enzyme production. Food Technol. 38(2): 78, 80–89, 98.

    Google Scholar 

  • Watanabe, E.; Toyama, K.; Karube, I.; Matsuoka, H.; and Suzuki, S. 1984. Enzyme sensor for hypoxanthine and inosine determination in edible fish. Appl. Microbiol. Biotechnol. 19: 18–22.

    Article  CAS  Google Scholar 

  • Weetall, H. H., and Pitcher, W. H., Jr. 1986. Scaling up an immobilized enzyme system. Science 232: 1396–1403.

    Article  CAS  Google Scholar 

  • Wilkinson, J. F. 1971. “Hydrocarbons as a Source of Single-Cell Protein.” In Microbes and Biological Productivity. D. E. Hughes and A. H. Rose, eds. Twenty-first Symposium of the Soc. Gen. Microbiol. Cambridge, England: The University Press.

    Google Scholar 

  • Williams, S. A.; Hodges, R. A.; Strike, T. L.; Snow, R.; and Kunkee, R. E. 1984. Cloning the gene for the malolactic fermentation of wine from Lactobacillus delbrueckii in Escherichia coli and yeasts. Appi. Environ. Microbiol. 47: 288–293.

    CAS  Google Scholar 

  • Wingard, L. B., Jr.; Castner, J. F.; Yao, S. J.; Wolfson, S. K., Jr.; Drash, A. L.; and Liu, C. C. 1984. Immobilized glucose oxidase in the potentiometric detection of glucose. Appl. Biochem. Biotechnol. 9: 95–104.

    Article  CAS  Google Scholar 

  • Wongkhalaung, C.; Kashiwagi, Y.; Magae, Y.; Ohta, T.; and Sasaki, T. 1985. Cellulase immobilized on a solid polymer. Appl. Microbiol. Biotechnol. 21: 37–41.

    Article  CAS  Google Scholar 

  • Yang, H.; Thayer, D. W.; and Yang, S. P. 1979. Reduction of endogenous nucleic acid in a single-cell protein. Appi. Environ. Microbiol. 38: 143–147.

    CAS  Google Scholar 

  • Yang, H. H.; Yang, S. P.; and Thayer, D. W. 1977. Evaluation of the protein quality of single-cell protein produced from mesquite. Food Sci. 42: 1247–1250.

    Article  CAS  Google Scholar 

  • Yang, H. Y. 1973. Effect of pH on the activity of Schizosaccharomyces pombe. J. Food Sci. 38: 1156–1157.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Van Nostrand Reinhold

About this chapter

Cite this chapter

Banwart, G.J. (1989). Useful Microorganisms. In: Basic Food Microbiology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-6453-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-6453-5_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-6455-9

  • Online ISBN: 978-1-4684-6453-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics