Skip to main content

Animal Models of Generalized Convulsive Seizures: Some Neuroanatomical Differentiation of Seizure Types

  • Chapter
Generalized Epilepsy

Abstract

Despite our ability to characterize, classify, and treat numerous forms of epileptic seizures, our understanding of the neuroanatomical and neurochemical substrates of seizures is remarkably limited. Even in animal models, in which we often have experimental control over seizure onset, intensity, duration, and quality, we are at a loss to define the precise neural pathways that are responsible for the various stages of seizure development. Clearly, an understanding of this nature would be of major benefit in providing insights regarding both potential substrates of pathology as well as therapeutic interventions for seizure disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albright, P.S., and Burnham, W.M., 1980, Development of a new pharmacological seizure model: Effects of anti-convulsants on cortical-and amygdala-kindled seizures in the rat. Epilepsia 21: 681–689.

    Article  Google Scholar 

  • Ben Ari, Y., 1985, Limbic seizure and brain damage produced by kainic acid: Mechanisms and relevance to human temporal lobe epilepsy. Neuroscience 14: 375–403.

    Article  Google Scholar 

  • Bergmann, F., Costin, A., and Gutman, J., 1963, A low threshold convulsive area in the rabbit mesencephalon. Electroencephalogr. Clin. Neuro-physiol. 15: 683–690.

    Article  Google Scholar 

  • Browning, R., 1985, Role of the brainstem reticular formation in tonic-clonic seizures: Lesion and pharmacological studies. Fed. Proc. 44: 2425–2431.

    Google Scholar 

  • Browning, R.A., and Faingold, C.L., 1988, Poster presented at the Generalized Epilepsy Symposium, Montreal, Canada.

    Google Scholar 

  • Browning, R., and Nelson, D., 1985, Variation in threshold and pattern of electroshock-induced seizures in rats depending on site of stimulation. Life Sci. 37: 2205–2211.

    Article  Google Scholar 

  • Browning, R., and Nelson, D., 1986, Modification of electroshock and PTZ seizure patterns in rats after precollicular transections. Exp. Neurol. 93: 546–556.

    Article  Google Scholar 

  • Browning, R., Turner, F., Simonton, R., and Bundman, M., 1981, Effect of midbrain and pontine tegmental lesions on the maximal electro-shock seizure pattern in rats. Epilepsia 22: 583–594.

    Article  Google Scholar 

  • Browning, R., Nelson, D., Mogharreban, N., Jobe, P., and Laird, H., 1985, Effect of midbrain and pontine tegmental lesions on audiogenic seizures in genetically epilepsy prone rats. Epilepsia 26: 175–183.

    Article  Google Scholar 

  • Dean, P., and Gale, K., 1989, Anticonvulsant action of GABA receptor blockade in the nigrotectal target region. Brain Res. 477: 391–395.

    Article  Google Scholar 

  • DePaulis, A., Vergnes, M., and Marescaux, C., et al., 1988, Evidence that activation of GABA receptors in the substantia nigra suppresses spontaneous spike-and-wave discharges in the rat. Brain Res. 448: 20–29.

    Article  Google Scholar 

  • DeSarro, G., Meldrum, B.S., and Reavill, C., 1985, Anticonvulsant action of 2-amino-7-phos-phono-heptanoic acid in the substantia nigra. Eur. J. Pharmacol. 106: 175–179.

    Article  Google Scholar 

  • Engel, J., Jr., Wolfson, L., and Brown, L., 1978, Anatomical correlates of electrical and behavioral events related to amygdala kindling. Ann. Neurol. 3: 538–544.

    Article  Google Scholar 

  • Esplin, D.W., and Freston, J.W., 1960, Physiological and pharmacological analysis of spinal cord convulsions. J. Pharmacol. Exp. Ther. 130: 68–80.

    Google Scholar 

  • Esplin, D.W., and Laffan, R.J., 1957, Determinants of flexor and extensor components of maximal seizures in cats. Arch. Int. Pharmacodyn. Ther. 113: 189–202.

    Google Scholar 

  • Faingold, C.L., 1988, The genetically epilepsy prone rat. Gen. Pharmacol. 19: 331–338.

    Article  Google Scholar 

  • Faingold, C.L., Millan, M.H., Boersma, C.A., and Meldrum, B.S., 1988, Excitant amino acids and audiogenic seizures in the genetically epilepsy-prone rat. I. Afferent seizure initiation pathways. Exp. Neurol. 99: 678–686.

    Article  Google Scholar 

  • Fernicola, D.J., and Gale, K., 1986, Midbrain site of convulsant action of morphine. Soc. Neurosci. 12:Abstr. #25.6.

    Google Scholar 

  • Frye, G., McCown, T., and Breese, G., 1983, Characterization of susceptibility to audiogenic seizures in ethanol-dependent rats after microinjection of GABA agonists into the inferior colliculus, substantia nigra or medial septum. J. Pharmacol. Exp. Ther. 227: 663–670.

    Google Scholar 

  • Frye, G.D., McCown, T.J., Breese, G.R., and Peterson, S.L., 1986, GABAergic modulation of inferior colliculus excitability: Role in ethanol withdrawal audiogenic seizures. J. Pharmacol. Exp. Ther. 237: 478–485.

    Google Scholar 

  • Gabreels, F., 1972, De involved van Phenytoine op de Purkinjecell van de rat. Doctoral dissertation. Catholic University of the Netherlands, Nijmegen.

    Google Scholar 

  • Gale, K., 1985, Mechanisms of seizure control mediated by gamma-aminobutyric acid: Role of the substantia nigra. Fed. Proc. 44: 2414–2424.

    Google Scholar 

  • Garant, D.S., and Gale, K., 1983, Lesions of substantia nigra protect against experimentally induced seizures. Brain Res. 273: 156–161.

    Article  Google Scholar 

  • Garant, D., and Gale, K., 1986, Intranigral muscimol attenuates electrographic signs of seizure activity induced by intravenous bicuculline in rats. Eur. J. Pharmacol. 124: 365–369.

    Article  Google Scholar 

  • Garant, D., and Gale, K., 1987, Substantia nigra-mediated anticonvulsant actions: Role of nigral output pathways. Exp. Neurol. 97: 143–159.

    Article  Google Scholar 

  • Glaser, G.H., 1980, Mechanisms of antiepileptic drug action: Clinical indicators. Adv. Neurol. 27: 11–20.

    Google Scholar 

  • Goddard, G., McIntyre, D., and Leech, C., 1969, A permanent change in brain function resulting from daily electrical stimulation. Exp. Neurol. 25: 295–330.

    Article  Google Scholar 

  • Gonzales, L., and Hettinger, M., 1984, Intranigral muscimol suppresses ethanol withdrawal seizures. Brain Res. 298: 163–166.

    Article  Google Scholar 

  • Hershkowitz, N., and Raines, A., 1978, Effects of carbamazepine on muscle spindle discharges. J. Pharmacol. Exp. Ther. 204: 581–591.

    Google Scholar 

  • Iadarola, M.J., and Gale, K., 1982, Substantia nigra: Site of anticonvulsant activity mediated by gamma-aminobutyric acid. Science 218: 1237–1240.

    Article  Google Scholar 

  • Jobe, P.C., Picchioni, A.L., and Chin, L., 1973, Role of brain norepinephrine in audiogenic seizures in the rat. J. Pharmacol. Exp. Ther. 184: 1–10.

    Google Scholar 

  • Jobe, P.C., Dailey, J.W., and Reigel, C.E., 1986, Noradrenergic and serotonergic determinats of seizure susceptibility and severity in genetically epilepsy-prone rats. Life Sci. 39: 775–782.

    Article  Google Scholar 

  • Krall, R., Penry, J.K., White, B., Kupferberg, H., and Swinyard, E., 1978, Antiepileptic drug development: II. Anticonvulsant drug screening. Epilepsia 19: 409–428.

    Article  Google Scholar 

  • Kreindler, A., Zuckermann, E., Steriade, M., and Chimion, J., 1958, Electroclinical features of convulsions induced by stimulation of brain stem. J. Neurophysiol. 21: 430–436.

    Google Scholar 

  • LeGal LaSalle, G., Kijima, M., and Feldblum, S., 1983, Abortive amygdaloid kindled seizures following microinjection of gamma-vinyl-GABA in the vicinity of substantia nigra in rats. Neurosci. Lett. 36: 69–74.30.

    Article  Google Scholar 

  • LeGal LaSalle, G., Shen, K.F., and Feldblum, S., 1984, Role of the hippocampus, amygdala and the substantia nigra in the evolution of status epilep-ticus induced by systemic injection of kainic acid in the rat. Electroencephalogr. Clin. Neurophysiol. 14: 235–40.

    Article  Google Scholar 

  • Levy, L., and Fenichel, G.M., 1965, Diphenylhy-dantoin activated seizures. Neurology 15: 716–722.

    Google Scholar 

  • Löscher, W., and Schwark, W., 1985, Evidence for impaired GABAergic activity in the substantia nigra of amygdaloid kindled rats. Brain Res. 339: 146–150.

    Article  Google Scholar 

  • Maggio, R., and Gale, K., 1989, Seizures evoked from area tempestas are subject to control by GABA and glutamate receptors in substantia nigra. Exp. Neurol. 105: 184–188.

    Article  Google Scholar 

  • McNamara, J.O., 1986, Kindling model of epilepsy. Adv. Neurol. 44: 857–877.

    Google Scholar 

  • McNamara, J.O., Galloway, M.T., Rigsbee, L.C., and Shin, C., 1984, Evidence implicating substantia nigra in regulation of kindled seizure threshold. J. Neurosci. 4: 2410–2417.

    Google Scholar 

  • Millan, M., Patel, S., Mello, L., and Meldrum, B., 1986a, Focal injection of 2-amino-7-phosphono-pheptanoic acid into prepiriform cortex protects against pilocarpine-induced limbic seizures in rats. Neurosci. Lett. 70: 69–74.

    Article  Google Scholar 

  • Millan, M.H., Meldrum, B.S., and Fainfold, C.S., 1986b, Induction of audiogenic seizure susceptibility by focal infusion of excitant amino acid or bicuculline into the inferior colliculus of normal rats. Exp. Neurol. 91: 634–639.

    Article  Google Scholar 

  • Millan, M.H., Meldrum, B.S., Boersma, C.A., and Faingold, C.L., 1988, Excitant amino acids and audiogenic seizures in the genetically epilepsy prone rat. II. Efferent seizure propagating pathways. Exp. Neurol. 99: 687–698.

    Article  Google Scholar 

  • Morimoto, K., Dragunow, M., and Goddard, G., 1986, Deep prepyriform cortex kindling and its relation to amygdala kindling in the rat. Exp. Neurol. 94: 637–648.

    Article  Google Scholar 

  • Monta, K., Okamota, M., Seki, K., and Wada, J., 1985, Suppression of amygdala kindled seizures in cats by enhanced GABAergic transmission in the substantia inominata. Exp. Neurol. 89: 225–236.

    Article  Google Scholar 

  • Moshe, S., and Albala, B., 1984, Nigral muscimol infusions facilitate the development of seizures in immature rats. Dev. Brain Res. 13: 305–308.

    Article  Google Scholar 

  • Olney, J.W., Collins, R.C., and Sloviter, R.S., 1986, Excitotoxic mechanisms of epileptic brain damage. Adv. Neurol. 44: 857–877.

    Google Scholar 

  • Patel, S., Millan, M., Mello, L., and Meldrum, B., 1986, 2-Amino-7-phosphonoheptanoic acid (2APH) infusion into entopeduncular nucleus protects against limbic seizures in rats. Neurosci. Lett. 64: 226–230.

    Article  Google Scholar 

  • Paz, C., Reygadas, E., and Fernandez-Guardiola, A., 1985, Amygdala kindling in chronically cer-ebellectomized cats. Exp. Neurol. 88: 418–424.

    Article  Google Scholar 

  • Penry, J.K., 1975, Perspectives in complex partial seizures. Adv. Neurol. 11: 1–14.

    Google Scholar 

  • Piredda, S., and Gale, K., 1985, Evidence that the deep prepiriform cortex contains a crucial epileptogenic site. Nature 317: 623–625.

    Article  Google Scholar 

  • Piredda, S., and Gale, K., 1986a, Anticonvulsant action of 2-amino-7-phosphonoheptanoic acid and muscimol in the deep prepiriform cortex. Eur. J. Pharmacol. 120: 115–118.

    Article  Google Scholar 

  • Piredda, S., and Gale, K., 1986b, Role of excitatory amino acid transmission in the genesis of seizures elicited from the deep prepiriform cortex. Brain Res. 377: 205–210.

    Article  Google Scholar 

  • Piredda, S., Pavlick, M., and Gale, K., 1987, Anticonvulsant effects of GABA elevation in the deep prepiriform cortex. Epilepsy Res. 1: 102–106.

    Article  Google Scholar 

  • Racine, R., 1972, Modification of seizure activity by electrical stimulation. II. Motor seizures. Electro-encephalogr. Clin. Neurophysiol. 32: 281–294.

    Article  Google Scholar 

  • Raines, A., and Anderson, R.J., 1976, The effects of acute cerebellectomy on maximal electroshock seizures and the anticonvulsant efficacy of diazepam in the rat. Epilepsia 17: 177–182.

    Article  Google Scholar 

  • Raines, A., Helke, C.J., Iadarola, M.J., Britton, L.W., and Anderson, R.J., 1976, Blockade of the tonic hindlimb extensor component of maximal electroshock and pentylenetetrazol-induced seizures by drugs acting on muscle and muscle spindle systems: A perspective on method. Epilepsia 17: 395–402.

    Article  Google Scholar 

  • Raines, A., Mahany, T.M., Baizer, L., Swope, S., and Hershkowitz, N., 1985, Description and analysis of the myotonolytic effects of Phenytoin in the decerebrate cat: Implications for potential utility of Phenytoin in spastic disorders. J. Pharmacol. Exp. Ther. 232: 283–294.

    Google Scholar 

  • Raines, A., Henderson, T.R., Swinyard, E.A., and Dretchen, K.L., 1989. Comparison of midazolam and diazepam by the intramuscular route for the seizures in a mouse model of status epilepticus, Epilepsia, in press.

    Google Scholar 

  • Reigel, C.E., Dailey, J.W., and Jobe, P.C., 1986, The genetically epilepsy-prone rat: An overview of seizure prone characteristics and responsiveness to anticonvulsant drugs. Life Sci. 39: 763–774.

    Article  Google Scholar 

  • Shulman, A., and Laycock, G.M., 1967, Action of central nervous system stimulant and depressant drugs in the intact animal, Eur. J. Pharmacol. 2: 17–25.

    Article  Google Scholar 

  • Stevens, J.R., Phillips, I., and deBeaurepaire, R., 1988, Gamma-vinyl-GABA in endopiriform area suppresses kindled amygdala seizures. Epilepsia 29: 404–411.

    Article  Google Scholar 

  • Swinyard, E., 1972, Electrically induced convulsions. In: Experimental Models of Epilepsy, eds. D. Purpura, J. Penry, D. Tower, D. Woodbury, and R. Walters; Raven Press, New York, pp. 433–458.

    Google Scholar 

  • Tanaka, K., and Kawasaki, Y., 1957, Effects of variation in stimulus intensity on maximal electroshock seizure pattern in the decerebrate and phenobarbital-treated mice. Yonago Acta Medica 2: 60–64.

    Google Scholar 

  • Tanaka, K., and Mishima, O., 1953, The localization of the center dealing with the tonic extensor seizure of electroshock. Jpn. J. Pharmacol. 3: 6–9.

    Article  Google Scholar 

  • Turski, W.A., Cavalhiero, E.A., Schwartz, M., Czuczwar, S.J., Kleinrok, Z., and Turski, L., 1983, Limbic seizures produced by pilocarpine in rats: Behavioral, electroencephalographic and neuropathological study. Behau. Brain Res. 9: 315–336.

    Article  Google Scholar 

  • Turski, L., Cavalheiro, E., Turski, W., and Meldrum, B., 1986a, Excitatory neurotransmission within substantia nigra pars reticulata regulates threshold for seizures produced by pilocarpine in rats: Effects of intranigral 2-amino-7-phosphonoheptanoate and N-methyl-D-aspartate. Neuroscience 18: 61–77.

    Article  Google Scholar 

  • Turski, L., Cavalheiro, E.A., Schwarz, M., Turski, F.W.A., DeMorales Mello, L.E.A., Bortolotto, Z.A., Klockgether, T., and Sontag, K.H., 1986b, Susceptibility to seizures produced by pilocarpine in rats after microinjections of isoniazid or gamma-vinyl-GABA into the substantia nigra. Brain Res. 370: 294–309.

    Article  Google Scholar 

  • Zhong, P., Schlichting, J., and Gale, K., 1988, Effects of ethosuximide and Phenytoin on convulsions induced by focal injection of bicuculline in area tempestas: Comparison with effects on systemic pentylenetetrazol-induced convulsions. Poster presented at Generalized Epilepsy Symposium, Montreal.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Birkhäuser Boston, Inc.

About this chapter

Cite this chapter

Gale, K. (1990). Animal Models of Generalized Convulsive Seizures: Some Neuroanatomical Differentiation of Seizure Types. In: Avoli, M., Gloor, P., Kostopoulos, G., Naquet, R. (eds) Generalized Epilepsy. Birkhäuser Boston. https://doi.org/10.1007/978-1-4684-6767-3_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-6767-3_23

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-1-4684-6769-7

  • Online ISBN: 978-1-4684-6767-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics