Skip to main content

Part of the book series: Progress in Gene Expression ((PRGE))

Abstract

Retinoids, a class of hydrophobic compounds including retinol (vitamin A), retinoic acid (RA) and a series of natural and synthetic derivatives, exhibit a vast array of profound and diverse effects on vertebrate development from early embryogenesis to maturity. Several families of serum, cytoplasmic and nuclear proteins are involved in the metabolism and biological actions of retinoids. Some of these proteins mediate direct effects of retinoids on gene expression while others are involved in their transport, storage and metabolism. The effects of retinoids on transcription are mediated by a number of nuclear binding proteins of two types: retinoic acid receptors (RARs) and retinoid X receptors (RXRs). RXR serves as an auxiliary factor required by RAR and other nuclear receptors for target gene regulation. These ligand-inducible transcription factors belong to the nuclear receptor superfamily, which also includes receptors for thyroid hormone, vitamin D3 and steroid hormones. Detailed studies of RAR and RXR function have revealed the existence of a vast elaborate web of gene regulation. This chapter will aim to analyse the diverse and complex pathways of retinoic acid responses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adan RA, Cox JJ, Beischlag TV, Burbach JP (1993): A composite hormone response element mediates the transactivation of the rat oxytocin gene by different classes of nuclear hormone receptors. Mol Endocrinol 7: 47–57

    Article  PubMed  CAS  Google Scholar 

  • Allan GF, Leng X, Tsai SY, Weigel NL, Edwards DP, Tsai MJ, O’Malley BW (1992a): Hormone and antihormone induce distinct conformational changes which are central to steroid receptor activation. J Biol Chem 267: 19513–19520

    PubMed  CAS  Google Scholar 

  • Allan GF, Tsai SY, Tsai MJ, O’Malley BW (1992b): Ligand-dependent conformational changes in the progesterone receptor are necessary for events that follow DNA binding. Proc Natl Acad Sci USA 89: 11750–11754

    Article  PubMed  CAS  Google Scholar 

  • Allenby G, Bocquel MT, Saunders M, Kazmer S, Speck J, Rosenberger M, Lovey A, Kastner P, Grippo JF, Chambon P, Levin AA (1993): Retinoic acid receptors and retinoid X receptors: interactions with endogenous retinoic acids. Proc Natl Acad Sci USA 90: 30–34

    Article  PubMed  CAS  Google Scholar 

  • Amero SA, Kretsinger RH, Moncrief ND, Yamamoto KR, Pearson WR (1992): The origin of nuclear receptor proteins: a single precursor distinct from other transcription factors. Mol Endocrinol 6: 3–7

    Article  PubMed  CAS  Google Scholar 

  • Aneskievich BJ, Fuchs E (1992): Terminal differentiation in keratinocytes involves positive as well as negative regulation by retinoic acid receptors and retinoid X receptors at retinoid response elements. Mol Cell Biol 12: 4862–4871

    PubMed  CAS  Google Scholar 

  • Apfel C, Bauer F, Crettaz M, Forni L, Kamber M, Kaufmann F, LeMotte P, Pirson W, Klaus M (1992): A retinoic acid receptor alpha antagonist selectively counteracts retinoic acid effects. Proc Natl Acad Sci USA 89: 7129–7133

    Article  PubMed  CAS  Google Scholar 

  • Ă„strom A, Pettersson U, Krust A, Chambon P, Voorhees JJ (1990): Retinoic acid and synthetic analogs differentially activate retinoic acid receptor dependent transcription. Biochem Biophy Res Comm 173: 339–345

    Article  Google Scholar 

  • Bailey JS, Siu C-H (1988): Purification and partial characterization of a novel binding protein for retinoic acid from neonatal rat. J Biol Chem 263: 9326–9332

    PubMed  CAS  Google Scholar 

  • Baker AR, McDonnell DP, Hughes M, Crisp TM, Mangelsdorf DJ, Haussler MR, Pike JW, Shine J, O’Malley BW (1988): Cloning and expression of full-length cDNA encoding human vitamin D receptor. Proc Natl Acad Sci USA 85: 3294–3298

    Article  PubMed  CAS  Google Scholar 

  • Baniahmad A, Ha I, Reinberg D, Tsai S, Tsai M-J, O’Malley BW (1993): Interaction of human thyroid hormone receptor Ăź with transcription factor TFIIB may mediate target gene derepression and activation by thyroid hormone. Proc Natl Acad Sci USA 90: 8832–8836

    Article  PubMed  CAS  Google Scholar 

  • Barettino D, Bugge TH, Bartunek P, Vivanco RM, Sonntag BV, Beug H, Zenke M, Stunnenberg HG (1993): Unliganded T3R, but not its oncogenic variant, v-erb A, suppresses RAR-dependent transactivation by titrating out RXR. EM BO J 12: 1343–1354

    CAS  Google Scholar 

  • Barettino D, Vivanco Ruiz MdM, Stunnenberg HG (1994): Characterization of the ligand-dependent transactivation domain of thyroid hormone receptor. EM BO J 13: 3039–3049

    CAS  Google Scholar 

  • Benbrook D, Lenhardt E, Pfahl M (1988): A new retinoic acid receptor identified from a hepatocellular carcinoma. Nature 333: 669–672

    Article  PubMed  CAS  Google Scholar 

  • Berkenstam A, Vivanco Ruiz MdM, Barettino D, Horikoshi M, Stunnenberg HG (1992): Cooperativity in transactivation between retinoic acid receptor and TFIID requires an activity analogous to EIA. Cell 69: 401–412

    Article  PubMed  CAS  Google Scholar 

  • Berrodin TJ, Marks MS, Ozato K, Linney E, Lazar MA (1992): Heterodimerization among thyroid hormone receptor, retinoic acid receptor, retinoid X receptor, chicken ovalbumin upstream promoter transcription factor, and an endogenous liver protein. Mol Endocrinol 6: 1468–1478

    Article  PubMed  CAS  Google Scholar 

  • Beug H, Vennström B (1991): Avian erythroleukaemia: Possible mechanisms involved in v-erb A oncogene function. In: Nuclear Hormone Receptors, Parker MG, ed. London: Academic Press

    Google Scholar 

  • Blomhoff R, Green MH, Berg T, Norum KR (1991): Vitamin A metabolism: new perspectives on absorption, transport and storage. Physiol Rev 71: 952–990

    Google Scholar 

  • Blomhoff R, Green MH, Berg T, Norum KR (1990): Transport and storage of vitamin A. Science 250: 399–404

    Article  PubMed  CAS  Google Scholar 

  • Blumberg B, Mangelsdorf DJ, Dyck JA, Bittner DA, Evans RM, De Robertis E (1992): Multiple retinoid-responsive receptors in a single cell: families of RXRs and RARs in the Xenopus egg. Proc Natl Acad Sci USA 89: 2321–2325

    Article  PubMed  CAS  Google Scholar 

  • Boylan JF, Lohnes D, Taneja R, Chambon P, Gudas LJ (1993): Loss of retinoic acid receptor gamma function in F9 cells by gene disruption results in aberrant Hoxa-1 expression and differentiation upon retinoic acid treatment. Proc Natl Acad Sci USA 90: 9601–9605

    Article  PubMed  CAS  Google Scholar 

  • Brand N, Petkovich M, Krust A, Chambon P, de ThĂ© H, Marchio A, Tiollais P, Dejean A (1988): Identification of a second human retinoic acid receptor. Nature 332: 850–853

    Article  PubMed  CAS  Google Scholar 

  • Brand NJ, Petkovich M, Chambon P (1990): Characterization of a functional promoter for the human retinoic acid receptor alpha (hRARα). Nucl Acids Res 18: 6799–6806

    Article  PubMed  CAS  Google Scholar 

  • Brockes JP (1989): Retinoids, homeobox genes and limbs morphogenesis. Neuron 2: 1285–1294

    Article  PubMed  CAS  Google Scholar 

  • Brockes JP (1990): Retinoic acid and limb regeneration. J Cell Sci Suppl 13: 191–198

    PubMed  CAS  Google Scholar 

  • Brockes J (1991): We may not have a morphogen. Nature 350: 15

    Article  PubMed  CAS  Google Scholar 

  • Bugge TH, Pohl J, Lonnoy O, Stunnenberg HG (1992): RXR alpha, a promiscuous partner of retinoic acid and thyroid hormone receptors. EMBO J 11: 1409–1418

    PubMed  CAS  Google Scholar 

  • Burnside J, Darling DS, Carr FE, Chin WW (1989): Thyroid hormone regulation of the rat glycoprotein hormone α-subunit gene promoter activity. J Biol Chem 264: 6886–6891

    PubMed  CAS  Google Scholar 

  • Burnstein KL, Cidlowski JA (1993): Multiple mechanisms for regulation of steroid hormone action./Cell Biochem 51: 130–134

    Article  CAS  Google Scholar 

  • Castaigne S, Chomienne C, Daniel MT, Ballerini P, Berger R, Fenaux P, Degos L (1990): All-trans retinoic acid as a differentiation therapy for acute promyelocytic leukemia: Clinical results. Blood 76: 1704–1709

    PubMed  CAS  Google Scholar 

  • Chambon P (1994): The retinoid signalling pathway: molecular and genetic analyses. Seminars in Cell Biology 5: 115–125

    Article  PubMed  CAS  Google Scholar 

  • Chen Z, Brand NJ, Chen A, Chen SJ, Tong JH, Wang ZY, Waxman S, Zelent A (1993): Fusion between a novel Kruppel-like zinc finger gene and the retinoic acid receptor-alpha locus due to a variant k(l 1:17) translocation associated with acute promyelocytic leukaemia. EMBO J 12: 1161–1167

    PubMed  CAS  Google Scholar 

  • Chomienne C, Balitrand N, Bellerini P, Castaigne S, de ThĂ© H, Degos L (1991): All-trans retinoic acid modulates the retinoic acid receptor-α in promyelcytic cells. J Clin Invest 88: 2150–2154

    Article  PubMed  CAS  Google Scholar 

  • Chomienne C, Ballerini P, Balitrand N, Amar M, Bernard JF, Boivin P, Daniel MT, Berger R, Castaigne S, Degos L (1989): Retinoic acid: an alternative therapy of promyelocytic leukaemias. Lancet 1: 746–747

    Article  Google Scholar 

  • Chomienne C, Ballerini P, Balitrand N, Daniel MT, Fenaux P, Castaigne S, Degos, L (1990): All-trans retinoic acid in acute promyelocytic leukemias. II. In vitro studies: structure-function relationship. Blood 76: 1710–1717

    PubMed  CAS  Google Scholar 

  • Chytil F (1984): Retinoic acid: biochemistry, pharmacology, toxicology and therapeutic use. Pharama Res Suppl 36: 93–100

    CAS  Google Scholar 

  • Chytil FJ, Ong, DE (1984): Cellular retinoid-binding proteins. In: The Retinoids, Sporn MB, Roberts AB, Goodman DS eds. New York: Academic Press

    Google Scholar 

  • Collins SJ (1987): The HL-60 promyelocytic leukemia cell line: Proliferation, differentiation and cellular oncogene expression. Blood 70: 1233–1244

    PubMed  CAS  Google Scholar 

  • Collins SJ, Robertson KA, Mueller L (1990): Retinoic acid-induced granulocytic differentiation of HL-60 myeloid leukemia cells is mediated directly through the retinoic acid receptor oc. Mol Cell Biol 10: 2154–2163

    CAS  Google Scholar 

  • Cooney AJ, Tsai SY, O’Malley, BW, Tsai MJ (1992): Chicken ovalbumin upstream promoter transcription factor (COUP-TF) dimers bind to different GGTCA response elements, allowing COUP-TF to repress hormonal induction of the vitamin D3, thyroid hormone, and retinoic acid receptors. Mol Cell Biol 12: 4153–4163

    PubMed  CAS  Google Scholar 

  • Danielian PS, White R, Lees JA, Parker MG (1992): Identification of a conserved region required for hormone dependent transcriptional activation by steroid hormone receptors. EMBO J 11: 1025–1033

    PubMed  CAS  Google Scholar 

  • Davis KD, Lazar MA (1993): Induction of retinoic acid receptor-beta by retinoic acid is cell specific. Endocrinol 132: 1469–1474

    Article  CAS  Google Scholar 

  • Degos L, Chomienne C, Daniel M-T, Berger R, Dombret H, Fenaux P, Castaigne S

    Google Scholar 

  • (1990): Treatment of first relapse in acute promyelocytic leukemia with all-trans retinoic acid. Lancet 336: 1440–1441

    Google Scholar 

  • De Luca LM (1991): Retinoids and their receptors in differentiation, embryogenesis, and neoplasia. FASEB J 5: 2924–2933

    PubMed  Google Scholar 

  • Demmer LA, Birkenmeier EH, Sweetser DA, Leving MS, Zollman S, Sparkes RS, Mohandas T, Lusis AJ, Gordon JI (1987): The cellular retinol binding protein II gene. J Biol Chem 262: 2458–2467

    PubMed  CAS  Google Scholar 

  • Dencker L, Annerwall E, Busch C, Eriksson U (1990): Localization of specific retinoid-acid-binding protein (CRABP) in the early mouse embryo. Development 110: 343–352

    PubMed  CAS  Google Scholar 

  • Denis M, Gustafsson J, Wikstrom A (1988): Interaction of the MR = 90,000 heat shock protein with the steroid binding domain of the glucocorticoid receptor. J Biol Chem 263: 18520–18523

    PubMed  CAS  Google Scholar 

  • Desbois C, Aubert D, Legrand C, Pain B, Samarut J (1991): A novel mechanism of action of v-erb A: Abrogation of the inactivation of transcription factor AP-1 by retinoic acid and thyroid hormone receptors. Cell 67: 731–740

    Article  PubMed  CAS  Google Scholar 

  • De ThĂ© H, Lavau C, Marchio A, Chomienne C, Degos L, Dejean A (1991): The PML-RARα fusion mRNA generated by the t(15; 17) translocation in acute promyelocytic leukemia encodes a functionally altered RAR. Cell 66: 675–684

    Article  PubMed  Google Scholar 

  • De ThĂ©, H, Marchio A, Tiollas P, Dejean A (1989): Differential expression and ligand regulation of the retinoic acid receptor α and β genes. EM BO J 8: 429–433

    Google Scholar 

  • De ThĂ© H, Vivanco Ruiz MdM, Tiollais. P, Stunnenberg H, Dejean A (1990): Identification of a retinoic acid responsive element in the retinoic acid receptor β gene. Nature 343: 177–180

    Article  PubMed  Google Scholar 

  • Diamond MI, Miner J, Yoshinaga SK, Yamamoto, KR (1990): Transcription factor interactions: selectors of positive or negative regulation from a single DNA element. Science 249: 1266–1272

    Article  PubMed  CAS  Google Scholar 

  • Dingwell C, Laskey RA (1991): Nuclear target sequences — a consensus? Trends Biochem Sci 16: 478–481

    Article  Google Scholar 

  • DollĂ© P, Fraulob V, Kastner P, Chambon P (1994): Developmental expression of murine retinoid X receptor (RXR) genes. Mech of Dev 45: 91–104

    Article  Google Scholar 

  • DollĂ© P, Ruberte E, Kastner P, Petkovich M, Stoner CM, Gudas, LJ, Chambon P (1989): Differential expression of genes encoding a, Ăź and y retinoic acid receptors and CRABP in the developing limbs of the mouse. Nature 342: 702–705

    Article  PubMed  Google Scholar 

  • DollĂ© P, Roberte E, Leroy P, Morriss-Kay G, Chambon P (1990): Retinoic acid receptors and cellular binding proteins. I. A systematic study of their differential pattern of transcription during mouse organogenesis. Development 110: 1133–1151

    PubMed  Google Scholar 

  • Drouin J, Sun YL, Chamberland M, Gauthier Y, Lean AD, Nemer M, Schmidt TJ (1993): Novel glucocorticoid receptor complex with DNA element of the hormone-repressed POMC gene. EM BO J 12: 145–156

    CAS  Google Scholar 

  • Durand B, Saunders M, Leroy P, Leid M, Chambon P (1992): All-trans and 9-cis retinoic acid induction of CRABP II transcription is mediated by RAR-RXR heterodimers bound to DR1 and DR2 repeated motifs. Cell 71: 73–85

    Article  PubMed  CAS  Google Scholar 

  • Dyck JA, Maul GG, Miller WHJ, Chen JD, Kakizuka A, Evans RM (1994): A novel macromolecular structure is a target of the promyelocyte-retinoic acid receptor oncoprotein. Cell 76: 333–343

    Article  PubMed  CAS  Google Scholar 

  • Eichele G (1989a): Retinoic acid induces a pattern of digits in anterior half wing buds that lack the zone of polarizing activity. Development 107: 863–867

    PubMed  CAS  Google Scholar 

  • Eichele G (1989b): Retinoids and vertebrate limb pattern formation. Trends in Genet. 5: 246–251

    Article  CAS  Google Scholar 

  • Fawell SE, Lees JA, White R, Parker MG (1990): Characterization and colocalization of steroid binding and dimerization activities in the mouse estrogen receptor. Cell 60: 953–962

    Article  PubMed  CAS  Google Scholar 

  • Folkers GE, van der Leede BJ, van der Saag PT (1993): The retinoic acid receptor-beta 2 contains two separate cell-specific transactivation domains, at the N-terminus and in the ligand-binding domain. Mol Endocrinol 7: 616–627

    Article  PubMed  CAS  Google Scholar 

  • Fondell JD, Roy AL, Roeder RG (1993): Unliganded thyroid hormone receptor inhibits formation of functional preinitiation complex: implications for active repression. Genes Dev 7: 1400–1410

    Article  PubMed  CAS  Google Scholar 

  • Forman BM, Samuels HH (1990a): Dimerization among nuclear hormone receptors. New Biol 2: 587–594

    PubMed  CAS  Google Scholar 

  • Forman BM, Samuels HH (1990b): Interactions among a subfamily of nuclear hormone receptors: The regulatory zipper model. Mol Endocrinol 4: 1293–1301

    Article  PubMed  CAS  Google Scholar 

  • Freemont PS, Hanson IM, Trowsdale J (1991): A novel cysteine-rich motif. Cell 64: 483–484

    Article  PubMed  CAS  Google Scholar 

  • Giguere V, Lyn S, Yip P, Siu CH, Amin S (1990a): Molecular cloning of cDNA encoding a second cellular retinoic acid binding protein. Proc Natl Acad Sci USA 87: 6233–6237

    Article  PubMed  CAS  Google Scholar 

  • Giguere V, Ong ES, Segui P, Evans RM (1987): Identification of a receptor for the morphogen retinoic acid. Nature 330: 624–629

    Article  PubMed  CAS  Google Scholar 

  • Giguere V, Shago M, Zirnibl RTP, Rossant J, Varmuza S (1990b). Identification of a novel isoform of the retinoic acid receptor y expressed in the mouse embryo. Mol Cell Biol 10: 2335–2340

    PubMed  CAS  Google Scholar 

  • Glass CK, DiRenzo J, Kurokawa R, Han Z (1991): Regulation of Gene Expression by Retinoic Acid Receptors. DNA Cell Biol 10: 623–638

    Article  PubMed  CAS  Google Scholar 

  • Goodman DS (1984): Vitamin A and retinoids in health and disease. New Engl J Med 310: 1023–1031

    Article  PubMed  CAS  Google Scholar 

  • Graupner G, Malle G, Maignan J, Lang G, PruniĂ©ras M, Pfahl M (1991): 6′-substituted naphthalene-2-carboxylic acid analogs, a new class of retinoic acid receptor subtype-specific ligands. Biochem Biophy Res Comm 179: 1554–1561

    Google Scholar 

  • Green S, Chambon P (1988): Nuclear receptors enhance our understanding of transcription regulation. Trends Genet 4: 309–314

    Article  PubMed  CAS  Google Scholar 

  • Grignani F, Fagioli M, Ferrucci PF, Alcalay M, Pelicci PG (1993a): The molecular genetics of acute promyelocytic leukemia. Blood Rev 7: 87–93

    Article  PubMed  CAS  Google Scholar 

  • Grignani F, Ferrucci PF, Testa U, Talamo G, Fagioli M, Alcalay M, Mencarelli A, Grignani F, Peschle C, Nicoletti I, Pelicci PG (1993b): The acute promyelocytic leukemia-specific PML-RAR alpha fusion protein inhibits differentiation and promotes survival of myeloid precursor cells. Cell 74: 423–431

    Article  PubMed  CAS  Google Scholar 

  • Gronemeyer H (1993): Transcription activation by nuclear receptors. J Recept Res 13: 667–691

    PubMed  CAS  Google Scholar 

  • Gronemeyer H, Benhamou B, Berry M, Bocquel MT, Gofflo D, Garcia T, Lerouge T, Metzger D, Meyer ME, Tora, L, Chambon P (1992): Mechanisms of antihormone action. J Steroid Biochem Mol Biol 41: 217–221

    Article  PubMed  CAS  Google Scholar 

  • Guiochon-Mantel A, Loosfelt H, Lescop P, Sar S, Atger M, Perrot-Applanat M, Milgrom E (1989): Mechanisms of nuclear localization of the progesterone receptor: evidence for interaction between monomers. Cell 57: 1147–1154

    Article  PubMed  CAS  Google Scholar 

  • Hanson IM, Poustka A, Trowsdale J (1991): New genes in the class II region of the major histocompatibility complex. Genomics 10: 417–424

    Article  PubMed  CAS  Google Scholar 

  • Hazel TG, Nathans D, Lau LF (1988): A gene inducible by serum growth factors encodes a member of the steroid and thyroid hormone receptor superfamily. Proc Natl Acad Sci USA 85: 8444–8448

    Article  PubMed  CAS  Google Scholar 

  • Hernandez N (1993): TBP, a universal eukaryotic transcription factor? Genes Dev 7: 1291–1308

    Article  PubMed  CAS  Google Scholar 

  • Heyman RA, Mangelsdorf DJ, Dyck JA, Stein R, Eichele G, Evans, RM, Thaller C (1992): 9-Cis retinoic acid is a high affinity ligand for the retinoid X receptor. Cell 68: 397–406

    Google Scholar 

  • Horikoshi N, Maguire K, Kralli A, Maldonado E, Reinberg D, Weinmann R (1991): Direct interaction between adenovirus EIA protein and the TATA box binding transcription factor IID. Proc Natl Acad Sci USA 88: 5124–5128

    Article  PubMed  CAS  Google Scholar 

  • Houle B, Rochette-Egly C, Bradley WE (1993): Tumor-suppressive effect of the retinoic acid receptor beta in human epidermoid lung cancer cells. Proc Natl Acad Sci USA 90: 985–989

    Article  PubMed  CAS  Google Scholar 

  • Ikeda Y, Lala DS, Luo X, Kim E, Moisan M-P, Parker KL (1993): Characterization of the mouse FTZ-F1 gene, which encodes a key regulator of steroid hydrooxylase gene expression. Mol Endocrinol 7: 852–860

    Article  PubMed  CAS  Google Scholar 

  • Ing NH, Beekman JM, Tsai SY, Tsai MJ, O’Malley BW (1992): Members of the steroid hormone receptor superfamily interact with TFIIB (S300-II). J Biol Chem 267: 17617–17623

    PubMed  CAS  Google Scholar 

  • Izpisua-Belmonte J-C, Tickle C, Mangelsdorf DF, DollĂ© P, Wolpert L, Duboule D (1991): Expression of the homeobox Hox-4 genes and the specification of position in chick wing development. Nature 350: 585–589

    Article  PubMed  CAS  Google Scholar 

  • Jonat C, Rahmsdorf HJ, Park KK, Cato ACB, Gebel S, Ponta H, Herrlich P (1990): Antitumour promotion and antiinflammation: down-modulation of AP-1 (Fos/Jun) activity by glucocorticoid. Cell 62: 1189–1204

    Article  PubMed  CAS  Google Scholar 

  • Jones-Villeneuve EM, Rudnicki VMA, Harris JF, McBurney MW (1983: Retinoic acid induced neural differentiation of embryonal carcinoma cells. Mol Cell Biol 3: 2271–2279

    PubMed  CAS  Google Scholar 

  • Kakizuka A, Miller WHJ, Umesono K, Warrell RPJ, Frankel SR, Murty VVVS, Dmitrovsky E, Evans RM (1991): Chromosomal translocation t(15; 17) in human acute promyelocytic leukemia fuses RARa with a novel putative transcription factor, PML. Cell 66: 663–674

    Article  PubMed  CAS  Google Scholar 

  • Kastner P, Krust A, Mendelsohn C, Gamier JM, Zelent A, Leroy P, Staub A, Chambon P (1990): Murine isoforms of retinoic acid receptor y with specific patterns of expression. Proc Natl Acad Sci USA 87: 2700–2704

    Article  PubMed  CAS  Google Scholar 

  • Kastner P, Perez A, Lutz Y, Rochette-Egly C, Gaub MP, Durand B, Lanotte M, Berger R, Chambon P (1992): Structure, localization and transcriptional properties of two classes of retinoic acid receptor alpha fusion proteins in acute promyelocytic leukemia (APL): structural similarities with a new family of oncoproteins. EM BO J 11: 629–642

    CAS  Google Scholar 

  • Keaveney M, Berkenstam A, Feigenbutz M, Vriend G, Stunnenberg HG (1993): Residues in the TATA-binding protein required to mediate a transcriptional response to retinoic acid in EC cells. Nature 365: 562–566

    Article  PubMed  CAS  Google Scholar 

  • Keidel S, LeMotte P, Apfel C (1994): Different agonist- and antagonist-induced conformational changes in retinoic acid receptors analyzed by protease mapping. Mol Cell Biol 14: 287–298

    PubMed  CAS  Google Scholar 

  • Kerppola TK, Curran T (1991): Transcription factor interactions: Basics on zippers. Curr Opin Struct Biol 1: 71–79

    Article  CAS  Google Scholar 

  • Kessel M, Gruss P. (1991): Homeotic transformations of murine vertebrae and concomitant alteration of Hox codes induced by retinoic acid. Cell 67: 89–104

    Article  PubMed  CAS  Google Scholar 

  • Kliewer SA, Umersono K, Heyman RA, Mangelsdorf DJ, Dyck JA, Evans RM (1992a): Retinoid X receptor-COUP-TF interactions modulate retinoic acid signalling. Proc Natl Acad Sci USA 89: 1448–1452

    Article  PubMed  CAS  Google Scholar 

  • Kliewer SA, Umesono K, Mangelsdorf DJ, Evans RM (1992b): Retinoid X receptor interacts with nuclear receptors in retinoic acid, thyroid hormone and vitamin D3 signalling. Nature 355: 446–449

    Article  PubMed  CAS  Google Scholar 

  • Koelle MR, Talbot WS, Seagraves WA, Bender MT, Cherbas P, Hogness DS (1991): The Drosophila EcR gene encodes an Ecdysone receptor, a new member of the steroid receptor superfamily. Cell 67: 59–77

    Article  PubMed  CAS  Google Scholar 

  • Krishna V, Chatterjee K, Lee J-K, Rentoumis A, Jameson JL (1989): Negative regulation of the thyroid-stimulating hormone α gene by thyroid hormone: Receptor interaction adjacent to the TATA box. Proc Natl Acad Sci USA 86: 9114–9118

    Article  Google Scholar 

  • Krust A, Kastner PH, Petkovich M, Zelent A, Chambon P (1989): A third human retinoic acid receptor, hRARy. Proc Natl Acad Sci USA 86: 5310–5314

    Article  PubMed  CAS  Google Scholar 

  • Kumar V, Chambon P (1988): The estrogen receptor binds tightly to its responsive element as a ligand-induced homodimer. Cell 55: 145–156

    Article  PubMed  CAS  Google Scholar 

  • La Thangue NB, Rigby PWJ (1987): An Adenovirus E1A-like transcription factor is regulated during the differentiation of murine Embryonal Carcinoma stem cells. Cell 49: 507–513

    Article  PubMed  Google Scholar 

  • Ladias JAA, Karathanasis SK (1991): Regulation of the apolipoprotein AI gene by ARP-1, a novel member of the steroid receptor superfamily. Science 251: 561–565

    Article  PubMed  CAS  Google Scholar 

  • Laudet V, Hanni C, Coll J, Catzflis F, Stehelin D (1992): Evolution of the nuclear receptor gene superfamily. EMBO J 11: 1003–1013

    PubMed  CAS  Google Scholar 

  • Lavorgna G, Ueda H, Clos J, Wu C (1991): FTZ-F1, a steroid hormone receptor-like protein implicated in the activation of fushi tarazu. Science 252: 848–851

    Article  PubMed  CAS  Google Scholar 

  • Lazar MM, Hodin RA, Darling DS, Chin WW (1989): A novel member of the thyroid/steroid hormone receptor family is encoded by the opposite strand of the rat c-erb A-alpha transcriptional unit. Mol Cell Biol 9: 1128–1136

    PubMed  CAS  Google Scholar 

  • Lee MS, Kliewer SA, Provencal J, Wright PE, Evans RM (1993): Structure of the retinoid X receptor alpha DNA binding domain: a helix required for homodimeric DNA binding. Science 260: 1117–1121

    Article  PubMed  CAS  Google Scholar 

  • Lee WS, Kao CC, Bryant GO, Liu X, Berk AJ (1991): Adenovirus EIA activation domain binds the basic repeat in the TATA box transcription factor. Cell 67: 365–376

    Article  PubMed  CAS  Google Scholar 

  • Lehmann JM, Dawson MI, Hobbs PD, Husmann M, Pfahl M (1991a): Identification of retinoids with nuclear receptor subtype-selective activities. Cancer Res 51: 4804–4809

    PubMed  CAS  Google Scholar 

  • Lehmann JM, Hoffmann B, Pfahl M (1991b): Genomic organization of the retinoic acid receptor gamma gene. Nucl Acids Res 19: 573–578

    Article  PubMed  CAS  Google Scholar 

  • Lehmann JM, Jong L, Fanjul A, Cameron JF, Lu XP, Haefner P, Dawson MI, Pfahl M (1992): Retinoids selective for retinoid X receptor response pathways. Science 258: 1944–1946

    Article  PubMed  CAS  Google Scholar 

  • Leid M, Kastner P, Chambon P (1992a): Multiplicity generates diversity in the retinoic acid signalling pathways. Trends Biochem Sci 17: 427–433

    Article  PubMed  CAS  Google Scholar 

  • Leid M, Kastner P, Lyons R, Nakshatri H, Saunders M, Zacharewski T, Chen J-Y, Staub A, Garnier J-M, Mader S, Chambon P (1992b): Purification, cloning, and RXR identity of a HeLa cell factor with which RAR or TR heterodimerizes to bind target sequences efficiently. Cell 68: 377–395

    Article  PubMed  CAS  Google Scholar 

  • Leroy P, Krust A, Zelent A, Mendelsohn C, Gamier JM, Kastner P, Dierich A, Chambon P (1991a): Multiple isoforms of the mouse retinoic acid receptor α are generated by alternative splicing and differential induction by retinoic acid. EMBO J 10: 59–69

    PubMed  CAS  Google Scholar 

  • Leroy P, Nakshatri H, Chambon P (1991b): The mouse retinoic acid receptor α2 isoform is transcribed from a promoter that contains a retinoic acid response element. Proc Natl Acad Sci USA 88: 10138–10142

    Article  PubMed  CAS  Google Scholar 

  • Levin AA, Sturzenbecker LJ, Kazmer S, Bosakowski T, Huselton C, Allenby G, Speck J, Kratzeisen C, Rosenberger M, Lovey A, Grippo JF (1992): 9-cis retinoic acid stereoisomer binds and activates the nuclear receptor RXR alpha. Nature 355: 359–361

    Article  PubMed  CAS  Google Scholar 

  • Li E, Sucov HM, Lee KF, Evans RM, Jaenisch R (1993): Normal development and growth of mice carrying a targeted disruption of the alpha 1 retinoic acid receptor gene. Proc Natl Acad Sci USA 90: 1590–1594

    Article  PubMed  CAS  Google Scholar 

  • Lipkin SM, Nelson CA, Glass CK, Rosenfeld MG (1992): A negative retinoic acid response element in the rat oxytocin promoter restricts transcriptional stimulation by heterologous transactivation domains. Proc Natl Acad Sci USA 89: 1209–1213

    Article  PubMed  CAS  Google Scholar 

  • Lohnes D, Dierich A, Ghyselinck N, Kastner P, Lampron C, LeMeur M, Lufkin T, Mendelsohn C, Nakshatri H, Chambon P (1992): Retinoid receptors and binding proteins. J Cell Sci Suppl 16: 69–76

    PubMed  CAS  Google Scholar 

  • Lohnes D, Kastner P, Dierich A, Mark M, LeMeur M, Chambon P (1993): Function of retinoic acid receptor gamma in the mouse. Cell 73: 643–658

    Article  PubMed  CAS  Google Scholar 

  • Lufkin T, Lohnes D, Mark M, Dierich A, Gorry P, Gaub MP, LeMeur M, Chambon P (1993): High postnatal lethality and testis degeneration in retinoic acid receptor alpha mutant mice. Proc Natl Acad Sci USA 90: 7225–7229

    Article  PubMed  CAS  Google Scholar 

  • Luisi BF, Xu WX, Otwinowski Z, Freedman LP, Yamamoto KR, Sigler PB (1991): Crystallographic analysis of the interaction of the glucocorticoid receptor with DNA. Nature 352: 497–505

    Article  PubMed  CAS  Google Scholar 

  • Maden M, Ong DE, Chytil F (1990): Retinoid-binding protein distribution in the developing mammalian nervous system. Development 109: 75–80

    PubMed  CAS  Google Scholar 

  • Maden M, Ong DE, Summerbell D, Chytil F (1988): Spatial distribution of cellular protein binding to retinoic acid in the chick limb bud. Nature 335: 733–735

    Article  PubMed  CAS  Google Scholar 

  • Maden M, Ong DE, Summerbell D, Chytil F (1989): The role of retinoid-binding proteins in the generation of pattern in the developing limb, the regenerating limb and the nervous system. Development Suppl 107: 109–119

    CAS  Google Scholar 

  • Mader S, Leroy P, Chen JY, Chambon P (1993): Multiple parameters control the selectivity of nuclear receptors for their response elements. Selectivity and promiscuity in response element recognition by retinoic acid receptors and retinoid X receptors. J Biol Chem 268: 591–600

    PubMed  CAS  Google Scholar 

  • Mangelsdorf DJ, Evans RM (1992): Retinoic Acid Receptors as Transcription Factors. In: Transcriptional Regulation, McKnight S Yamamoto KR, eds. New York: CSHL Press

    Google Scholar 

  • Mangelsdorf DJ, Borgmeyer U, Heyman RA, Zhou JY, Ong ES, Oro AE, Kakizuka A, Evans RM (1992): Characterization of three RXR genes that mediate the action of 9-cis retinoic acid. Genes Dev 6: 329–344

    Article  PubMed  CAS  Google Scholar 

  • Mangelsdorf DJ, Ong ES, Dyck JA, Evans RM (1990): Nuclear receptor that identifies a novel retinoic acid response pathway. Nature 345: 224–229

    Article  PubMed  CAS  Google Scholar 

  • Marks MS, Hallenbeck PL, Nagata T, Segars JH, Appella E, Nikodem VM, Ozato K (1992): H-2RIIBP (RXRβ) heterodimerization provides a mechanism for combinatorial diversity in the regulation of retinoic acid and thyroid hormone responsive genes. EMBO J 11: 1419–1435

    PubMed  CAS  Google Scholar 

  • MasaguĂ© J (1990): The transforming growth factor-β family. Ann Rev Cell Biol 6:597–641

    Article  Google Scholar 

  • Matsuoka A, Miyamura K, Emi N, Tahara T, Tanimoto M, Naoe T, Ohno R, Kakizuka A, Evans RM, Saito H (1993): Unexpected heterogeneity of PML/RAR alpha fused mRNA detected by nested polymerase chain reaction in acute promyelocytic leukemia. Leukemia 7: 1151–1155

    PubMed  CAS  Google Scholar 

  • Mattei MG, Riviere M, Krust A, Ingvarsson S, Venström B, Islam MW, Levan G, Kastner P, Zelent A, Chambon P, Szpierer J, Szpierer C (1991): Chromosomal assignment of retinoic acid receptor (RAR) genes in the human, mouse and rat genomes. Genomics 10: 1061–1069

    Article  PubMed  CAS  Google Scholar 

  • Mendelsohn C, Larkin S, Mark M, LeMeur M, Clifford J, Zelent A, Chambon P (1994): RARβ isoforms: distinct transcriptional control by retinoic acid and specific spatial patterns of promoter activity during mouse embryonic development. Mech of Dev 45: 227–241

    Article  CAS  Google Scholar 

  • Mendelsohn C, Ruberte E, LeMeur M, Morriss-Kay G, Chambon P (1991): Developmental analysis of the retinoic acid-inducible RAR-β2 promoter in transgenic animals. Development 113: 723–734

    PubMed  CAS  Google Scholar 

  • Mendelsohn C, Ruberte, E, Chambon P (1992): Retinoid receptors in vertebrate limb development. Dev Biol 152: 50–61

    Article  PubMed  CAS  Google Scholar 

  • Mietus SM, Sladek FM, Ginsburg GS, Kuo CF, Ladias JA, Darnell JJ, Karathanasis SK (1992): Antagonism between apolipoprotein AI regulatory protein 1, Ear3/COUP-TF, and hepatocyte nuclear factor 4 modulates apolipoprotein CIII gene expression in liver and intestinal cells. Mol Cell Biol 12: 1708–1718

    Google Scholar 

  • Milbrandt J (1988): Nerve growth factor induces a gene homologous to the glucocorticoid receptor gene. Neuron 1: 183–188

    Article  PubMed  CAS  Google Scholar 

  • Miner JN, Yamamoto KR (1991): Regulatory crosstalk at composite response elements. Trends Biochem Sci 16: 423–427

    Article  PubMed  CAS  Google Scholar 

  • Miner JN, Yamamoto KR (1992): The basic region of AP-1 specifies glucocorticoid receptor activity at a composite response element. Genes Dev 6: 2491–2501

    Article  PubMed  CAS  Google Scholar 

  • Miner JN, Diamond MI, Yamamoto KR (1991): Joints in the regulatory lattice: Composite regulation by steroid receptor-AP-1 complexes. Cell Growth Diff 2: 525–530

    PubMed  CAS  Google Scholar 

  • Minucci S, Zand DJ, Dey A, Marks MS, Nagata T, Grippo JF, Ozato K (1994): Dominant negative retinoid X receptor beta inhibits retinoic acid-responsive gene regulation in embryonal carcinoma cells. Mol Cell Biol 14: 360–372

    PubMed  CAS  Google Scholar 

  • Miyajima N, Horiuchi R, Shibuya Y, Fukushige S-I, Matsubara K-I, Toyoshima K, Yamamoto T (1989): Two erb A homologs encoding proteins with different T3 binding capacities are transcribed from opposite DNA strands of the same genetic locus. Cell 57: 31–39

    Article  PubMed  CAS  Google Scholar 

  • Mlodzik M, Hiromi Y, Weber U, Goodman CS, Rubin GM (1990): The Drosophila seven-up gene, a member of the steroid receptor gene superfamily, controls photoreceptor cell fates. Cell 60: 211–224

    Article  PubMed  CAS  Google Scholar 

  • Moore DM (1990): Diversity and unity in the nuclear hormone receptors: A terpenoid receptor superfamily. New Biol 2: 100–105

    PubMed  CAS  Google Scholar 

  • Morriss-Kay G (1993): Retinoic acid and craniofacial development: molecules and morphogenesis. BioEssays 15: 9–15

    Article  PubMed  CAS  Google Scholar 

  • Näär AM, Boutin J-M, Lipkin SM, Yu, VC, Holloway JM, Glass, CK, Rosenfeld MG (1991): The orientation and spacing of core DNA-binding motifs dictate selective transcriptional responses to three nuclear receptors. Cell 65: 1267–1279

    Article  PubMed  Google Scholar 

  • Nagpal S, Friant S, Nakshatri H, Chambon P (1993): RARs and RXRs: evidence for two autonomous transactivation functions (AF-1 and AF-2) and heterodimerization in vivo. EMBO J 12: 2349–2360

    PubMed  CAS  Google Scholar 

  • Nagpal S, Saunders M, Kastner P, Durand B, Nakshatri H, Chambon P (1992a): Promoter context- and response element-dependent specificity of the transcriptional activation and modulating functions of retinoic acid receptors. Cell 70: 1007–1019

    Article  PubMed  CAS  Google Scholar 

  • Nagpal S, Zelent A, Chambon P (1992b): RAR-β, a retinoic acid receptor isoform is generated from RAR-β2 by alternative splicing and usage of a CUG initiator codon. Proc Natl Acad Sci USA 89; 2718–2722

    Article  PubMed  CAS  Google Scholar 

  • Nakai A, Kartha S, Sakurai A, Toback FG, De Groot LJ (1990): A human early response gene homologous to murine nur77 and rat NGFI-B, and related to the nuclear receptor superfamily. Mol Endocrinol 4: 1438–1443

    Article  PubMed  CAS  Google Scholar 

  • Nakshatri H, Chambon P (1994): The directly repeated RG(G/T)TCA motifs of the rat and mouse cellular retinol-binding protein II genes are promiscuous binding sites for RAR, RXR, HNF-4, and ARP-1 homo- and heterodimers. J Biol Chem 269: 890–902

    PubMed  CAS  Google Scholar 

  • Nicholson RC, Mader S, Nagpal S, Rochette-Egly C, Chambon P (1990): Negative regulation of the rat stromelysin gene promoter by retinoic acid is mediated by an API binding site. EMBO J 9: 4443–4454

    PubMed  CAS  Google Scholar 

  • Noji S, Nohno T, Koyama E, Muto K, Ohyama K, Aoki Y, Ohsugi K, Ide H, Taniguchi S, Saito T (1991): Retinoic acid induces polarizing activity but it is unlikely to be a morphogen in the chick limb bud. Nature 350: 83–86

    Article  PubMed  CAS  Google Scholar 

  • O’Donnell AL, Koenig RJ (1990): Mutational analysis identifies a new functional domain of the thyroid hormone receptor. Mol Endocrinol 4: 715–720

    Article  PubMed  Google Scholar 

  • O’Malley BW, Conneely OM (1992): Orphan receptors: in search of a unifying hypothesis for activation. Mol Endocrinol 6: 1359–1361

    Article  PubMed  Google Scholar 

  • Ong DE (1984): A novel retinol-binding protein from rat. J Biol Chem 259: 1476–1482

    PubMed  CAS  Google Scholar 

  • Ong DE (1987): Cellular retinoid binding proteins. Arch Dermatol 123: 1693a–1695a

    Article  Google Scholar 

  • Oro AE, McKeown M, Evans RM (1990): Relationship between the product of the Drosophila ultraspiracle locus and vertebrate retinoid X receptor. Nature 347: 298–301

    Article  PubMed  CAS  Google Scholar 

  • Pandolfi PP, Alcalay M, Fagioli M, Zangrilli D, Mencarelli A, Diverio D, Biondi A, Lo Coco F, Rambaldi A, Grignani F, Rochette-Egly C, Gaube M-P, Chambon P, Pelicci PG (1992): Genomic variability and alternative splicing generate multiple PML/RARa transcripts that encode aberrant PML proteins and PML/RARα isoforms in acute promyelocytic leukaemia. EMBO J 11: 1397–1407

    PubMed  CAS  Google Scholar 

  • Parker MG (1993): Steroid and related receptors. Curr Opin Cell Biol 5: 499–504

    Article  PubMed  CAS  Google Scholar 

  • Perez A, Kastner P, Sethi S, Lutz Y, Reibel C, Chambon P (1993): PMLRAR homodimers: distinct DNA binding properties and heteromeric interactions with RXR. EMBO J 12: 3171–3182

    PubMed  CAS  Google Scholar 

  • Perez-Castro AV, Toth-Rogler LE, Wei L-N, Nguyen-Huu MC (1989): Spatial and temporal pattern of expression of the cellular retinoic acid-binding protein and the cellular retinol-binding protein during mouse embryogenesis. Proc Natl Acad Sci USA 86: 8813–8817

    Article  PubMed  CAS  Google Scholar 

  • Perlmann T, Rangarajan PN, Umesono K, Evans RM (1993): Determinants for selective RAR and TR recognition of direct repeat HREs. Genes Dey 7: 1411–1422

    Article  CAS  Google Scholar 

  • Petkovich M, Brand NJ, Krust A, Chambon P (1987): A human retinoic acid receptor which belongs to the family of nuclear receptors. Nature 330: 444–450

    Article  PubMed  CAS  Google Scholar 

  • Picard D, Yamamoto KR (1987): Twin signals mediate hormone dependent nuclear localization of the glucocorticoid receptor. EMBO J 6: 3333–3340

    PubMed  CAS  Google Scholar 

  • Pignoni F, Baldarelli RM, Steingrimsson E, Diaz, RJ, Patapoutian A, Merriam JR, Lengyel JA (1990): The Drosophila gene tailless is expressed at the embryonic termini and is a member of the steroid receptor superfamily. Cell 62: 151–163

    Article  PubMed  CAS  Google Scholar 

  • Pijnappel WW, Hendriks HF, Folkers GE, van der Brink CE, Dekker EJ, Edelen-bosch C, van der Saag PT, Durston AJ (1993): The retinoid ligand 4-oxo-retinoic acid is a highly active modulator of positional specification. Nature 366: 340–344

    Article  PubMed  CAS  Google Scholar 

  • Pratt WB, Jolly DJ, Pratt DV, Hollenberg SM, Giguere, V, Cadepond FM, Schweizer-Groyer G, Catelli M, Evans RM, Baulieu E (1988): A region in the steroid binding domain determines formation of the non-DNA-binding, 9S glucocorticoid receptor complex. J Biol Chem 263: 267–273

    PubMed  CAS  Google Scholar 

  • Ptashne M (1988): How eukaryotic transcriptional activators work. Nature 335: 683–689

    Article  PubMed  CAS  Google Scholar 

  • Ragsdale CW, Brockes JP (1991): Retinoic acid receptors and vertebrate limb morphogenesis. In: Nuclear Hormone Receptors, Parker MG, ed. London: Academic Press

    Google Scholar 

  • Rousselot P, Hardas B, Patel A, Guidez F, Gaken J, Castaigne S, Dejean A, De ThĂ© H, Degos L, Farzaneh F, Chomienne C (1994): The PML-RAR alpha gene product of the t(15; 17) translocation inhibits retinoic acid-induced granulocytic differentiation and mediated transactivation in human myeloid cells. Oncogene 9: 545–551

    PubMed  CAS  Google Scholar 

  • Ruberte E, DollĂ© P, Krust A, Zelent A, Morriss-Kay G, Chambon P (1990): Specific spatial and temporal distribution of retinoic acid receptor gamma transcripts during mouse embryogenesis. Development 108: 213–222

    PubMed  CAS  Google Scholar 

  • Ruberte E, DollĂ© P, Chambon P, Morriss-Kay G (1991): Retinoic acid receptors and cellular binding proteins. III. Their differential pattern of transcription during early morphogenesis in mouse embryos. Development 111: 45–60

    PubMed  CAS  Google Scholar 

  • Ruberte E, Friederich V, Morriss-Kay G, Chambon P (1992): Differential distribution patterns of CRABP I and CRABP II transcripts during mouse embryogenesis. Development 115: 973–987

    PubMed  CAS  Google Scholar 

  • Ryseck R-P, MacDonald-Bravo H, MattĂ©i M-G, Ruppert S, Bravo R (1989): Structure, mapping and expression of a growth factor inducible gene encoding a putative nuclear hormonal binding receptor. EMBO J 8: 3327–3335

    PubMed  CAS  Google Scholar 

  • Saari JC, Bredberg L, Garwin GG (1982): Identification of the endogenous retinoids associated with three cellular retinoid-binding proteins from bovine retina and retinal pigment epithelium. J Biol Chem 257: 13329–13333

    PubMed  CAS  Google Scholar 

  • Sagami I, Tsai SY, Wang H, Tsai M-J, O’Malley BW (1986): Identification of two factors required for the transcription of the ovalbumin gene. Mol Cell Biol 6: 4259–4267

    PubMed  CAS  Google Scholar 

  • Sap J, Muñoz A, Damm K, Goldberg Y, Ghysdael J, Vennström B (1986): The c-erb A protein is a high-affinity receptor for thyroid hormone. Nature 324: 635–640

    Article  PubMed  CAS  Google Scholar 

  • SchĂĽle R, Rangarajan P, Kliewer S, Ransone LJ, Bolado J, Yang N, Verma IM, Evans RM (1990): Functional antagonism between oncoprotein c-Jun and the glucocorticoid receptor. Cell 62, 1217–1226

    Article  PubMed  Google Scholar 

  • SchĂĽle R, Randarajan P, Yang N, Kliewer S, Ransone LJ, Bolado J, Verma IM, Evans RM (1991): Retinoic acid is a negative regulator of AP-1-responsive genes. Proc Natl Acad Sci USA 88: 6092–6096

    Article  PubMed  Google Scholar 

  • Schwabe JW, Chapman L, Finch JT, Rhodes D (1993): The crystal structure of the estrogen receptor DNA-binding domain bound to DNA: how receptors discriminate between their response elements. Cell 75: 567–578

    Article  PubMed  CAS  Google Scholar 

  • Schwabe JWR, Neuhaus D, Rhodes D (1990): Solution structure of the DNA-binding domain of the estrogen receptor. Nature 348: 458–461

    Article  PubMed  CAS  Google Scholar 

  • Shubeita HE, Sambrook JF, McCormick AM (1987): Molecular cloning and analysis of functional cDNA and genomic clones encoding bovine cellular retinoic-acid binding protein. Proc Natl Acad Sci USA 84: 5645–5649

    Article  PubMed  CAS  Google Scholar 

  • Simeone A, Acampora D, Arcioni L, Andrews PW, Boncinelli E, Mavilio F (1990): Sequential activation of Hox2 homeobox genes by retinoic acid in human embryonal carcinoma cells. Nature 346: 763–766

    Article  PubMed  CAS  Google Scholar 

  • Slack JM (1987): We have a morphogen. Nature 317: 553–554

    Article  Google Scholar 

  • Sladek FM, Zhong W, Lai E, Darnell JE (1990): Liver-enriched transcription factor HNF-4 is a novel member of the steroid receptor superfamily. Genes Dev 4: 2353–2365

    Article  PubMed  CAS  Google Scholar 

  • Smith SM, Eichele G (1991): Temporal and regional difference in the expression pattern of distinct retinoic acid receptor-β transcripts in the chick embryo. Development 111: 245–252

    PubMed  CAS  Google Scholar 

  • Smith SM, Pang, K, Sundin O, Wedden SE, Thaller C, Eichele G (1989): Molecular approaches to vertebrate limb morphogenesis. Development Suppl 107: 121–131

    CAS  Google Scholar 

  • Smith WC, Nakshatri H, Leroy P, Rees J, Chambon P (1991): A retinoic acid response element is present in the mouse cellular retinol binding protein I (mCRBPI) promoter. EMBO J 10: 2223–2230

    PubMed  CAS  Google Scholar 

  • Sporn MB, Roberts AB (1990): TGF-β: problems and prospects. Cell Regulation 1: 875–882

    PubMed  CAS  Google Scholar 

  • Sporn MB, Roberts A (1991): Interactions of retinoids and transforming growth factor-β in regulation of cell differentiation and proliferation. Mol Endocrinol 5: 3–7

    Article  PubMed  CAS  Google Scholar 

  • Stoner CM, Gudas LJ (1989): Mouse cellular retinoic acid binding protein: cloning, complementary DNA sequence and messenger RNA expression during the retinoic acid induced differentiation of F9 wild type and RA-3–10 mutant teratocarcinoma cells. Cancer Res 49: 1497–1504

    PubMed  CAS  Google Scholar 

  • Strickland S, Mahdavi V (1978): The induction of differentiation in teratocarcinoma stem cells by retinoic acid. Cell 15: 333–343

    Article  Google Scholar 

  • Stunnenberg HG (1993): Mechanisms of transactivation by retinoic acid receptors. Bio Essay s 15: 309–315

    CAS  Google Scholar 

  • Sucov HM, Murakami KK, Evans RM (1990): Characterization of an autoregulated response element in the mouse retinoic acid receptor type β gene. Proc Natl Acad Sci USA 87: 5392–5396

    Article  PubMed  CAS  Google Scholar 

  • Summerbell D, Maden M (1990): Retinoic acid, a developmental signalling molecule. Trends-Neuro sci 13: 142–147

    Article  CAS  Google Scholar 

  • Sundelin J, Anundi H, Tragardh L, Eriksson UL, Lind P, Ronne P, Peterson PA, Rask L (1985): The primary structure of rat liver cellular retinol-binding protein. J Biol Chem 260: 6488–6493

    PubMed  CAS  Google Scholar 

  • Tabin CJ (1991): Retinoids, homeoboxes, and growth factors: towards molecular models for limb development. Cell 66: 199–217

    Article  PubMed  CAS  Google Scholar 

  • Thaller C, Eichele G (1987): Identification and spatial distribution of retinoids in the developing chick limb bud. Nature 327: 625–628

    Article  PubMed  CAS  Google Scholar 

  • Thaller C, Eichele G (1990): Isolation of 3,4-didehydroretinoic acid, a novel morphogenetic signal in the chick wing bud. Nature 345: 815–819

    Article  PubMed  CAS  Google Scholar 

  • Thomas HE, Stunnenberg HG, Stewart AF (1993): Heterodimerisation of the Drosophila ecdysone receptor with retinoid X receptor and Ultraspiracle. Nature 362: 471–475

    Article  PubMed  CAS  Google Scholar 

  • Thompson KL, Santon JB, Shephard LB, Walton GM, Gill GN (1992). A nuclear protein is required for thyroid hormone receptor binding to an inhibitory half-site in the epidermal growth factor receptor promoter. Mol Endocrinol 6: 627–635

    Article  PubMed  CAS  Google Scholar 

  • Tickle C, Alberts B, Wolpert L, Lee J (1982): Local application of retinoic acid to the limb bud mimics the action of the polarizing region. Nature 296: 564–566

    Article  PubMed  CAS  Google Scholar 

  • Tomic M, Jiang C-K, Epstein HS, Freedberg IM, Samuels HH, Blumenberg M (1990): Nuclear receptors for retinoic acid and thyroid hormone regulate transcription of keratin genes. Cell Regulation 1: 965–973

    PubMed  CAS  Google Scholar 

  • Tran P, Zhang XK, Salbert G, Hermann T, Lehmann JM, Pfahl M (1992): COUP orphan receptors are negative regulators of retinoic acid response pathways. Mol Cell Biol 12: 4666–4676

    PubMed  CAS  Google Scholar 

  • Tsai SY, Carlstedt-Duke J, Weigel NL, Dahlamn K, Gustaffson JA, Tsai M-J, O’Malley BW (1988): Molecular interactions of steroid hormone receptor with its enhancer element: evidence for receptor dimer formation. Cell 55: 361–369

    Article  PubMed  CAS  Google Scholar 

  • Tsukiyama T, Ueda H, Hirose S, Niwa O (1992): Embryonal long terminal repeat-binding protein is a murine homolog of FTZ-F1, a member of the steroid receptor superfamily. Mol Cell Biol 12: 1286–1291

    PubMed  CAS  Google Scholar 

  • Tugwood JD, Issemann I, Anderson RG, Bundell KR, McPheat WL, Green S (1992): The mouse peroxisome proliferator activated receptor recognizes a response element in the 5′ flanking sequence of the rat acyl CoA oxidase gene. EMBO J 11: 433–439

    PubMed  CAS  Google Scholar 

  • Ueda H, Sun G-C, Murata T, Hirose S (1992): A novel DNA-binding motifs abuts the Zinc finger domain of insect nuclear hormone receptor FTZ-F1 and mouse embryonal long terminal repeat-binding protein. Mol Cell Biol 12: 5667–5672

    PubMed  CAS  Google Scholar 

  • Umesono K, Murakami KK, Thompson CC, Evans RM (1991): Direct repeats as selective response elements for the thyroid hormone, retinoic acid and vitamin D receptors. Cell 65: 1255–1266

    Article  PubMed  CAS  Google Scholar 

  • Vaessen M-J, Meijers JHC, Bootsma D, Van Kessel AD (1990): The cellular retinoicacid binding protein is expressed in tissues associated with retinoic-acid-induced malformations. Development 110: 371–378

    PubMed  CAS  Google Scholar 

  • Valcárcel R, Holz H, GarcĂ­a JimĂ©nez C, Barettino D, Stunnenberg HG (1994): Retinoid-dependent in vitro transcription mediated by the RXR/RAR hetero-dimer (submitted)

    Google Scholar 

  • Vivanco Ruiz MdM, Bugge T, Hirschmann P, Stunnenberg HG (1991): Functional characterization of a natural element for retinoic acid. EMBO J 10: 3829–3838

    Google Scholar 

  • Wanek N, Gardiner DM, Muneoka K, Bryant SV (1991): Conversion by retinoic acid of anterior cells into ZPA cells in the chick wing bud. Nature 350: 81–83

    Article  PubMed  CAS  Google Scholar 

  • Wang C, Kelly J, Bowden-Pope DF, Stiles CD (1990): Retinoic acid promotes transcription of the PDGFα-receptor gene. Mol Cell Biol 10: 6781–6784

    PubMed  CAS  Google Scholar 

  • Wang LH, Tsai SY, Cook RG, Beattie WG, Tsai MJ, O’Malley BW (1989): COUP transcription factor is a member of the steroid receptor superfamily Nature 340: 163–166

    Article  PubMed  CAS  Google Scholar 

  • Warrell RJ, De ThĂ© H, Wang ZY, Degos L (1993): Acute promyelocytic leukemia. New Engl J Med 329: 177–189

    Article  PubMed  CAS  Google Scholar 

  • Wei L-N, Mertz JR, Goodman DS, Nguyen-Huu MC (1987): Cellular retinoic acid-and cellular retinol-binding proteins: complementary deoxyribonucleic acid cloning, chromosomal assignment, and tissue expression. Mol Endocrinol 1: 526–534

    Article  PubMed  CAS  Google Scholar 

  • Weinberger C, Thompson CC, Ong ES, Lebo R, Gruol D, Evans RM (1986): The c-erb A gene encodes a thyroid hormone receptor. Nature 324: 641–646

    Article  PubMed  CAS  Google Scholar 

  • Weis K, Rambaud S, Lavau C, Jansen J, Carvalho T, Carmo-Fonseca M, Lamond A, Dejean A (1994): Retinoic acid regulates aberrant nuclear localization of PML-RARα in acute promyelocytic leukemia cells. Cell 16: 345–356

    Article  Google Scholar 

  • Widom RL, Rhee M, Karathanasis SK (1992): Repression by ARP-1 sensitizes apolipoprotein AI gene responsiveness to RXR alpha and retinoic acid. Mol Cell Biol 12: 3380–3389

    PubMed  CAS  Google Scholar 

  • Wilson TE, Paulsen RE, Padgett KA, Milbrandt J (1992): Participation of non-Zinc finger residues in DNA binding by two nuclear orphan receptors. Science 256: 107–110

    Article  PubMed  CAS  Google Scholar 

  • Yang-Yen HF, Chambard JC, Sun YL, Smeal T, Schmidt TJ, Drouin J, Karin M (1990): Transcriptional interference between c-jun and the glucocorticoid receptor: mutual inhibition of DNA binding due to direct protein-protein interaction. Cell 62: 1205–1215

    Article  PubMed  CAS  Google Scholar 

  • Yao T-P, Segraves WA, Oro AE, McKeown M, Evans RM (1992): Drosophila ultraspiracle modulates ecdysone receptor function via heterodimer formation. Cell 71: 63–72

    Article  PubMed  CAS  Google Scholar 

  • Ylikomi T, Bocquel MT, Berry M, Gronemeyer H, Chambon P (1992): Cooperation of proto-signals for nuclear accumulation of estrogen and progesterone receptors. EMBO J 11: 3681–3694

    PubMed  CAS  Google Scholar 

  • Yu VC, Delsert C, Andersen B, Holloway JM, Devary OM, Näär AM, Kim SY, Boutin J-M, Glass CK, Rosenfeld MG (1991): RXRβ: a coregulator that enhances binding of retinoic acid, thyroid hormone and vitamin D receptors to their cognate response elements. Cell 67: 1251–1266

    Article  PubMed  CAS  Google Scholar 

  • Yu VC, Näär AM, Rosenfeld MG (1992): Transcriptional regulation by the nuclear receptor superfamily. Curr Opin Biotechnol 3: 597–602

    Article  PubMed  CAS  Google Scholar 

  • Zechel C, Shen X-Q, Chambon P, Gronemeyer H (1944a): Dimerization interfaces formed between the DNA binding domains determine the cooperative binding of RXR/RAR and RXR/TR heterodimers to DR5 and DR4 elements. EMBO J 13: 1414–1424

    Google Scholar 

  • Zechel C, Shen X-Q, Chen J-Y, Chen Z-P, Chambon P, Gronemeyer H (1994b): The dimerization interfaces formed between the DNA binding domains of RXR, RAR and TR determine the binding specificity and polarity of the full-length receptors to direct repeats. EMBO J 13: 1425–1433

    PubMed  CAS  Google Scholar 

  • Zelent A, Krust A, Petkovich M, Kastner P, Chambon P (1989): Cloning of murine α and β retinoic acid receptors and a novel receptor y predominantly expressed inskin. Nature 339: 714–717

    Article  PubMed  CAS  Google Scholar 

  • Zelent A, Mendelsohn C, Kastner P, Krust A, Gamier JM, Ruffenach F, Leroy P, Chambon P (1991): Differentially expressed isoforms of the mouse retinoic acid receptor β are generated by usage of two promoters and alternative splicing. EMBO J 10:71–81

    PubMed  CAS  Google Scholar 

  • Zenke M, Muñoz A, Sap J, Vennström B, Beug H (1990): v-erb A oncogene activation entails the loss of hormone-dependent regulator activity of c-erb A. Cell 61: 1035–1049

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Lehmann J, Hoffmann B, Dawson MI, Cameron J, Graupner G, Hermann T, Tran P, Pfahl M (1992): Homodimer formation of retinoid X receptor induced by 9-cis retinoic acid. Nature 358–591

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Birkhäuser Boston

About this chapter

Cite this chapter

Keaveney, M., Stunnenberg, H.G. (1995). Retinoic Acid Receptors. In: Baeuerle, P.A. (eds) Inducible Gene Expression, Volume 2. Progress in Gene Expression. Birkhäuser Boston. https://doi.org/10.1007/978-1-4684-6837-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-6837-3_7

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-1-4684-6839-7

  • Online ISBN: 978-1-4684-6837-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics