Skip to main content

Part of the book series: Reviews of Environmental Contamination and Toxicology ((RECT,volume 132))

Abstract

It has been known for more than 40 years, since the introduction of modern herbicides, that certain compounds can produce phytotoxic vapor during and after spray application (Baskin and Walker 1953; Zimmerman et al. 1953) and thus contaminate sensitive crops and natural vegetation. These volatile herbicides do not belong to one specific chemical type or category of use, but are often, although not exclusively, either an ester-based formulation or intended for soil incorporation. One advantage of herbicides formulated as esters is that they are generally more efficacious than the equivalent salt formulation due to the higher solubility of nonpolar compounds in the waxes of the leaf surface, which in turn leads to increased uptake and hence phytotoxicity. The result is that the same degree of weed control can be achieved with a smaller amount of ester-based herbicide than is possible with the salt. Another advantage of ester formulations is that they can be tank-mixed with other pesticides so that a crop can be sprayed with the minimum number of operations. Herbicide vapor itself may play a role in weed control because it is probably well-distributed in the crop canopy immediately after application and thus available for assimilation by weeds that were not adequately sprayed. In the case of soil-incorporated herbicides, vapor may facilitate the distribution through soil air spaces (Hance et al. 1973), as well as contribute to long-term weed control by its slow release from soil (Swann and Behrens 1972).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abeles FB (1968) Herbicide-induced ethylene production: Role of the gas in sublethal doses of 2,4-D. Weed Sci 16: 498–500.

    CAS  Google Scholar 

  • Bacci E, Cerejeira MJ, Gaggi C, Chemello G, Calamari D, Vighi M (1990) Bio-concentration of organic chemical vapors in plant leaves: The Azalea model. Chemosphere 21: 525–535.

    Article  CAS  Google Scholar 

  • Baskin AD, Walker EA (1953) The responses of tomato plants to vapors of 2,4-D and/or 2,4,5-T formulations at normal and higher temperatures. Weeds 2: 280–287.

    Article  Google Scholar 

  • Behrens R, Lueschen WE (1979) Dicamba volatility. Weed Sci 27: 486–493.

    CAS  Google Scholar 

  • Bell JNB (1984) Air pollution problems in Western Europe. In: Koziol MJ, Whatley FR (eds) Gaseous air pollutants and plant metabolism. Butterworths, London, pp 3–24.

    Google Scholar 

  • Bennet RJ (1990) The volatilization of formulated ester, amine and K salt derivatives of phenoxyalkanoic herbicides: Evidence to connect herbicide activity with plant nutrient status of tomato (Lycopersicon esculentum Mill) plants. S Afr J Plant Soil 7: 96–100.

    CAS  Google Scholar 

  • Bentson KP, Norris LA (1991) Foliar penetration and dissipation of triclopyr butoxyethyl ester herbicide on leaves and glass slides in the light and dark. J Agric Food Chem 39: 622–630.

    Article  CAS  Google Scholar 

  • Brain P, Cousens R (1989) An equation to describe dose responses where there is stimulation of growth at low doses. Weed Res 29: 93–96.

    Article  Google Scholar 

  • Breeze VG, Timms LD (1986) Some effects of low doses of the phenoxyalkanoic herbicide mecoprop on the growth of oilseed rape (Brassica napus L.) and its relation to spray drift damage. Weed Res 26:433–439.

    Article  CAS  Google Scholar 

  • Breeze VG, West CJ (1987a) Long-and short-term effects of vapor of the herbicide 2,4-D butyl on the growth of tomato plants. Weed Res 27: 13–21.

    Article  CAS  Google Scholar 

  • Breeze VG, West CJ (1987b) Effects of 2,4-D butyl vapor on the growth of six crop species. Ann Appl Biol 111: 185–191.

    Article  CAS  Google Scholar 

  • Breeze VG (1988a) Effects of low concentrations of vapor of the phenoxyalkanoic herbicide 2,4-D butyl on growth of tomato plants. Pestic Sci 22: 251–261.

    Article  CAS  Google Scholar 

  • Breeze VG (1988b) Growth of tomato plants following exposure to fluroxypyr vapor. Weed Res 28: 297–301.

    Article  CAS  Google Scholar 

  • Breeze VG (1988c) Methods to investigate sub-lethal effects of herbicides on plant species. In: Greaves MP, Smith BD, Grieg-Smith PW (eds) Field methods for the study of environmental effects of pesticides. BCPC mono 40, BCPC Pub, Thornton Heath, U.K., pp 255–264.

    Google Scholar 

  • Breeze VG (1990) Uptake by tomato plants of the herbicide [14C] 2,4-D butyl in the vapor phase. Pestic Sci 29: 9–18.

    Article  CAS  Google Scholar 

  • Breeze VG, van Rensburg E (1991) Vapor of the free acid of the herbicide 2,4-D is toxic to tomato and lettuce plants. Environ Pollut 72: 259–267.

    Article  PubMed  CAS  Google Scholar 

  • Breeze VG, Fowler AT (1992) Antagonistic effects of simultaneous exposure to sulphur dioxide gas and vapor of the herbicide 2,4-D iso-octyl on the carbon dioxide exchange of tomato and field bean plants. New Phytol 120: 389–396.

    Article  CAS  Google Scholar 

  • Breeze VG, van Rensburg E (1992) Uptake of the herbicide [14C1 2,4-D iso-octyl in the vapor phase by tomato and lettuce plants and some effects on growth and phytotoxicity. Ann Appl Biol 120: 493–500.

    Article  CAS  Google Scholar 

  • Breeze VG, Simmons JC, Roberts MO (1992a) Evaporation and uptake of the herbicide 2,4-D butyl applied to barley leaves. Pestic Sci 36: 101–107.

    Article  CAS  Google Scholar 

  • Breeze V, Thomas G, Butler R (1992b) Use of a model and toxicity data to predict the risks to some wild plant species from drift of four herbicides. Ann Appl Biol 121: 669–677.

    Article  Google Scholar 

  • Campbell M, Jones RA (1985) Investigations of a glycyl formulation of mecoprop with very low vapor action. In: British crop protection conference on weeds. BCPC Pub, Surrey, U.K., pp 289–296.

    Google Scholar 

  • Carney AW, Stephenson GR, Ormrod DP, Ashton GC (1973) Ozone-herbicide interactions in crop plants. Weed Sci 21: 508–511.

    CAS  Google Scholar 

  • Cessna AJ, Grover R (1978) Spectrophotometric determination of dissociation constants of selected acidic herbicides. J Agric Food Chem 26: 289–292.

    Article  CAS  Google Scholar 

  • Combellack JH, Pritchard GH (1990) Rating the off-target hazards of herbicides. In: 9th Australian weeds conference. Crop Sci Society of South Australia, Univ Adelaide, Adelaide, Australia, pp 275–278.

    Google Scholar 

  • Crafts AS (1960) Evidence for hydrolysis of esters of 2,4-D during absorption by plants. Weeds 8: 19–25.

    Article  CAS  Google Scholar 

  • Crosby DG, Bowers JB (1985) Composition and photochemical reactions of a dimethylamine salt formulation of (4-chloro-2-methylphenoxy)acetic acid ( MCPA ). J Agric Food Chem 33: 569–573.

    Article  CAS  Google Scholar 

  • Darrall NM (1986) The sensitivity of net photosynthesis in several plant species to short-term fumigation with sulphur dioxide. J Exp Bot 37: 1313–1322.

    Article  CAS  Google Scholar 

  • de Beer PR, Smit C, van Dyk LP (1992) Air monitoring for pollution by auxin-type herbicides. Chemosphere 24: 719–733.

    Article  Google Scholar 

  • de Jong FMW, van der Voet E, Canters KJ (1991) The side-effects of airborne pesticides on fungi and vascular plants. CML Rept 74, Leiden Univ Cip-Data, Koninklijke Bibliotheek, The Hague.

    Google Scholar 

  • Dennett MD, Milford JR, Elston J (1978) The effect of temperature on the relative leaf growth rate of crops of Vicia faba L. Agric Meteorol 19: 505–514.

    Article  Google Scholar 

  • Eagle DJ (1982) Hazard to adjoining crops from vapor drift of phenoxy herbicides applied to cereals. Aspects Appl Biol 1: 33–41.

    Google Scholar 

  • Elliott JG, Wilson BJ (1983) The influence of weather on the efficiency and safety of pesticide application. The drift of herbicides. British Crop Protection Council Occas Publ No 3, BCPC Pub, Croydon, U.K.

    Google Scholar 

  • Farwell SO, Robinson E, Powell WJ, Adams DF (1976) Survey of airborne 2,4-D in south-central Washington. J Air Pollut Control Assoc 26: 224–230.

    Article  PubMed  CAS  Google Scholar 

  • Gentner WA (1966) The influence of EPTC on external foliage wax deposition. Weeds 14: 27–31.

    Article  CAS  Google Scholar 

  • Gilbey DJ, Ralph CM, Scott AN, Ebell GF, Home RW (1984) Airborne 2,4-D and tomato damage at Geraldton, Western Australia. Aust Weeds 3: 57–69.

    CAS  Google Scholar 

  • Glotfelty DE, Seiber JN, Liljedahl LA (1987) Pesticides in fog. Nature (London) 325: 602–605.

    Article  CAS  Google Scholar 

  • Grabowski JM, Hopen HJ (1985) Phytotoxic effect of oxyfluorfen vaporization. Weed Sci 33: 306–309.

    CAS  Google Scholar 

  • Grover R, Kerr LA, Wallace K, Yoshida K, Maybank J (1976) Residues of 2,4-D in air samples from Saskatchewan: 1966–1975. J Environ Sci Hlth B 11: 331–347.

    Article  CAS  Google Scholar 

  • Hance RJ, Holroyd J, McKone CE (1973) Some aspects of tri-allate volatility. Pestic Sci 4: 13–17.

    Article  CAS  Google Scholar 

  • Hartley GS, Graham-Bryce IJ (1980) Physical principles of pesticide behaviour, vol 2. Academic Press, London.

    Google Scholar 

  • Heagle AS, Philbeck RB, Ferell RE, Heck WW (1989) Design and performance of a large field exposure chamber to measure effects of air quality on plants. J Environ Qual 18: 361–367.

    Article  CAS  Google Scholar 

  • Horwitz W (1980) Official methods of analysis of the Association of Official Analytical Chemists, 13th ed. AOAC, Washington, DC.

    Google Scholar 

  • Hunt R (1982) Plant growth curves. Arnold, East Kilbride, U.K.

    Google Scholar 

  • Jordaan LM, Meinhardt HR, van Dyk LP (1991) Threshold concentrations of 2,4-D acid or 2,4-D dimethylamine for causing morphological changes in tomato seedlings. Appl Plant Sci 5: 14–17.

    Google Scholar 

  • Larsen BR (1985) Effects of simulated acid rain and (±)-2-(2,4-dichlorophenoxy) propanoic acid on selected crops. Ecotoxicol Environ Saf 10: 228–238.

    Article  PubMed  CAS  Google Scholar 

  • Lendzian KJ, Kerstiens G (1991) Sorption and transport of gases and vapors in plant cuticles. Rev Environ Contam Toxicol 121: 65–128.

    Article  CAS  Google Scholar 

  • Majewski MS, McChesney MM, Seiber JN (1991) A field comparison of two methods for measuring DCPA soil evaporation rates. Environ Toxicol Chem 10: 301–311.

    Article  CAS  Google Scholar 

  • Marcheterre L, Choudry GG, Barrie Webster GR (1988) Environmental photochemistry of herbicides. Rev Environ Contam Toxicol 103: 61–126.

    Article  CAS  Google Scholar 

  • Martin JA, Fletcher JT (1972) The effects of sublethal doses of various herbicides on lettuce. Weed Res 12: 268–271.

    Article  CAS  Google Scholar 

  • McCall PJ, Stafford LE, Gavit PD (1986) Compartmental model describing the foliar behaviour of tridiphane on Giant Foxtail. J Agric Food Chem 34: 229–234.

    Article  CAS  Google Scholar 

  • McCall PJ (1988) Effect of chemical structure, temperature, crop oil concentrate, and bentazon on the behaviour of haloxyfop in Yellow Foxtail (Setaria glauca) —a quantitative modeling approach. Weed Sci 36: 424–435.

    CAS  Google Scholar 

  • Meinhardt HR (1989) Guidelines for assessing hormone herbicide damage on vegetables. Dept Agriculture and Water Supply, Republic of South Africa.

    Google Scholar 

  • Meinhardt HR, van Dyk LP (1992) Effects of 2,4-D iso-octyl on the morphology, chlorophyll content and dry mass of lettuce and tomato seedlings. S Afr J Plant Soil 9: 37–38.

    CAS  Google Scholar 

  • Merritt CR, Simmons RC (1985) An IRGA system for continuously monitoring of CO2 and H2O vapor exchange in replicate plants growing in controlled environments. Technical Rept, Agricultural and Food Res Council Weed Res Organisation, No 82.

    Google Scholar 

  • Noble A, Hamilton DJ (1990) Relation between volatility rating and composition of phenoxy herbicide ester formulations. Pestic Sci 28: 203–214.

    Article  CAS  Google Scholar 

  • Paterson S, Mackay D, Tam D, Shiu WY (1990) Uptake of organic chemicals by plants: A review of processes, correlations and models. Chemosphere 21: 297–331.

    Article  CAS  Google Scholar 

  • Peacock JM (1975) Temperature and leaf growth in Lolium perenne, II. The site of temperature perception. J Appl Ecol 12: 115–123.

    Article  Google Scholar 

  • Pfeiffer RK, Holmes HM (1961) A study of the competition between barley and oats as influenced by barley seedrate, nitrogen level and barban treatment. Weed Res 1: 5–18.

    Article  Google Scholar 

  • Que Hee SS, Sutherland RG (1981) The phenoxyalkanoic herbicides, vol I. CRC Press, Boca Raton, FL.

    Google Scholar 

  • Ries SK (1976) Subtoxic effects on plants. In: Audus LJ (ed) Herbicides: Physiology, biochemistry, ecology, 2nd ed. Academic Press, London, pp 313–344.

    Google Scholar 

  • Sandmann ERIC, de Beer PR, van Dyk LP (1991) Atmospheric pollution by auxintype herbicides in Tala Valley, Natal. Chemosphere 22: 137–145.

    Article  CAS  Google Scholar 

  • Savory BM (1973) Relative phytotoxicity of 2,4-D ester/ioxynil ester herbicides. Int Sugar J 75: 195–199.

    CAS  Google Scholar 

  • Sherwood CH, Weigle JL, Denisen EL (1970) 2,4-D as an air pollutant: Effects on growth of representative horticultural plants. Hortscience 5: 211–213.

    CAS  Google Scholar 

  • Spencer WF (1987) Volatilization of pesticide residues. In: Biggar JW, Seiber JN (eds) Fate of pesticides in the environment. Univ Calif Div of Agriculture and Natural Resources Publ No 3320, Oakland, CA, pp 61–68.

    Google Scholar 

  • Swann CW, Behrens R (1972) Phytotoxicity of trifluralin vapors from soil. Weed Sci 20: 143–146.

    CAS  Google Scholar 

  • Taylor AW, Glotfelty DE (1989) Evaporation from soils and crops. In: Grover R (ed) Environmental chemistry of herbicides, vol I. CRC Press, Boca Raton, FL, pp 89–129.

    Google Scholar 

  • Taylor AW, Spencer WF (1990) Volatilization and vapor transport processes. In: Cheng HH (ed) Pesticides in the soil environment: Processes, impacts, and modeling. Soil Sci Soc of America, Madison, WI, pp 213–269.

    Google Scholar 

  • van Rensburg E, Breeze VG (1990) Uptake and development of phytotoxicity following exposure to vapor of the herbicide 14C 2,4-D butyl by tomatò and lettuce plants. Environ Exp Bot 30: 405–414.

    Article  Google Scholar 

  • Voldner EC, Schroeder WH (1990) Long-range atmospheric transport and deposition of toxaphene. In: Kurtz DA (ed) Long-range transport of pesticides. Lewis Publ, Chelsea, MI, pp 223–231.

    Google Scholar 

  • Wauchope RD, Buttler TM, Hornsby AG, Augustijn-Beckers PWM, Burt JP (1992) The SCS/ARS/CES pesticide properties database for environmental decision-making. Rev Environ Contam Toxicol 123: 1–155.

    Article  PubMed  CAS  Google Scholar 

  • Woodrow JE, McChesney MM, Seiber JN (1990) Modeling the volatilization of pesticides and their distribution in the environment. In: Kurtz DA (ed) Long-range transport of pesticides. Lewis Publ, Chelsea, MI, pp 61–81.

    Google Scholar 

  • Worthing CR, Hance RJ (eds) (1991) The pesticide manual, a world compendium, 9th ed. Brit Crop Protection Council, Unwin Brothers Ltd, Old Woking, Surrey, U.K.

    Google Scholar 

  • Yamasue Y, Worsham AD, Anderson CE (1982) Morphological and anatomical effects of benefin vapors on tobacco (Nicotiana tabacum). Weed Sci 30: 539–544.

    CAS  Google Scholar 

  • Zimmerman PW, Hitchcock AE, Kirkpatrick H (1953) Methods for determining relative volatility of esters of 2,4-D and other growth regulants based on response of tomato plants. Weeds 2: 254–261.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag New York, Inc.

About this paper

Cite this paper

Breeze, V.G. (1993). Phytotoxicity of Herbicide Vapor. In: Ware, G.W. (eds) Reviews of Environmental Contamination and Toxicology. Reviews of Environmental Contamination and Toxicology, vol 132. Springer, New York, NY. https://doi.org/10.1007/978-1-4684-7065-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-7065-9_2

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4684-7067-3

  • Online ISBN: 978-1-4684-7065-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics