Skip to main content

Targets and Mechanisms of Action Associated with Laser Mediated Photosensitization

  • Chapter
Laser Systems for Photobiology and Photomedicine

Part of the book series: NATO ASI Series ((NSSB,volume 252))

  • 136 Accesses

Abstract

Photodynamic therapy (PDT) is the treatment of malignant lesions with visible light following the systemic administration of a tumorlocalizing photosensitizer. Hematoporphyrin derivative (HpD) and a purified component called Photofrin II are currently used in clinical PDT and this therapy continues to show promise in the treatment of solid tumors. However, it is clear that PDT is still at an early stage in its development. In this chapter, we will examine molecular, cellular, and in-vivo mechanisms related to PDT.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Jori and J. D. Spikes, “Photobiochemistry of porphyrins”, in: “Topic in Photomedicine”, K. C. Smith, ed., Plenum Press, New York (1984)

    Google Scholar 

  2. J. Moan, “Porphyrin-sensitized photodynamic ihactivation of cells: a review”, Laser Med. Sci., 1:5 (1986)

    Article  Google Scholar 

  3. R. Hilf, D. B. Smail, R. S. Murant, P. B. Leakey and S. L. Gibson, “Hematoporphyrin derivative-induced photosensitivity of mitochondrial succinate dehydrogenase and selected cytosolic enzyme of R3230 AC mammary adenocarcinomas of rats”, Cancer Res., 44:1483 (1984)

    Google Scholar 

  4. C. J. Gomer, “DNA damage and repair in CHO cells following hematoporphyrin photoradiation”, Cancer Lett. 11:161 (1980)

    Article  ADS  Google Scholar 

  5. C. J. Gomer, N. Rucker, A. Banerjee and W. F. Benedict, “Comparison of mutagenicity and induction of sister chromatid exchanges in Chinese hamster cells exposed to hematoporphyrin derivative, photoradiation, ionizing radiation, or U.V. radiation”, Cancer Res. 43:2622 (1983)

    Google Scholar 

  6. D. Kessel, “Sites of photosensitization by derivatives of hematoporphyrin”, Photochem. Photobiol. 44:489 (1986)

    Article  Google Scholar 

  7. S. H. Selman, M. Kreimer-Birnbaum, J. E. Klaunig, P. J. Goldblatt, R. W. Keck and S. L. Britton, “Blood flow in transplantable bladder tumors treated with hematoporphyrin derivative and light”, Cancer Res. 441924 (1984)

    Google Scholar 

  8. B. W. Henderson, S. M. Waldow, T. S. Mang, W. R. Potter, P. B. Malone and T. J. Dougherty, “Tumor destruction and kinetics of tumor cell death in two experimental mouse tumors following photodynamic therapy”, Cancer Res. 45-572 (1985)

    Google Scholar 

  9. W. M. Star, H. P. A. Marijnissen, A. E. van der Berg-Blok, J. A. C. Versteeg, K. A. P. Franken and H. S. Reinhold, “Destruction of rat mammary tumor and normal tissue microcirculation by hematoporphyrin derivative photoradiation observed in-vivo in sandwich observation chamber”, Cancer Res. 46:2532 (1986)

    Google Scholar 

  10. M. C. Berenbaum, G. W. Hall and A. D. Hayes, “Cerebral photosensiti-zation by hematoporphyrin derivative. Evidence for an endothelial site of action”, Br. J. Cancer 53:81 (1986)

    Article  Google Scholar 

  11. S. H. Selman, M. Kreimer-Birnbaum, P. J. Goldblatt, T. S. Anderson, R. W. Keck and S. L. Britton, “Jejunal blood flow after exposure to light in rats injected with hematoporphyrin derivative”, Cancer Res. 45: 6425 (1985)

    Google Scholar 

  12. C. Chang and T. J. Dougherty, “Photoradiation therapy: kinetics and thermodynamics of porphyrin uptake and loss in normal and malignant cells in culture (abstract)”, Radiat. Res. 74:498 (1978)

    Google Scholar 

  13. J. Moan, H. B. Steen, K. Keren and T. Christensen, “Uptake of hematoporphyrin derivative and sensitized photoinactivation of C3H cells with different oncogenic potential”, Cancer Lett. 14:291 (1981)

    Google Scholar 

  14. B. W. Henderson, D. A. Bellnier, B. Zirig and T. J. Dougherty, “Aspects of the cellular uptake and retention of hematoporphyrin derivative and their correlation with the biological response to PRT in-vitro”, in: “Porphyrin Photosensitization”, D. Kessel and T. J. Dougherty, eds., Plenum Press, New York (1983)

    Google Scholar 

  15. C. J. Gomer, N. Rucker and A. L. Murphree, “Differential cell photo sensitivity following Porphyrin photodynamic therapy”, Cancer Res. 48:4539 (1988)

    Google Scholar 

  16. C. J. Gomer, N. Rucker and A. L. Murphree, “Transformation and mutagenic potential of porphyrin photodynamic therapy in mammalian cells”, Int. J. Radiat. Biol. 53:651 (1988)

    Article  Google Scholar 

  17. M. J. Schlesinger, “Heat shock proteins: the search for functions”, J. Cell. Biol. 103:321 (1986)

    Article  Google Scholar 

  18. G. N. Teodorakis, D. J. Zand, P. T. Jotzbauer, G. T. Williams and R. I. Morimoto, “Hemin-induced transcriptional activation of the HSP70 gene during erythroid maturation in K562 cells is due to a heat shock factor-mediated stress response”, Mol. Cell. Biol. 9:3166 (1989)

    Google Scholar 

  19. S. S. Watowich and R. I. Morimoto, “Complex regulation of heat-shock and glucose-responsive genes in numan cells”, Mol. Cell.Biol. 8:393 (1988)

    Google Scholar 

  20. K. Weishaput, C. J. Gomer and T. J. Dougherty, “Identification of singlet oxygen as the cytotoxic agent in photo-inactivation of a marine tumor”, Cancer Res. 36:2326 (1976)

    Google Scholar 

  21. J. P. Keene, D. Kessel, E. J. Land, R. W. Redmond and T. G. Truscott, “Direct detection of singlet oxygen sensitized by hematoporphyrin and related compounds”, Photochem. Photobiol. 43:117 (1986)

    Article  Google Scholar 

  22. C. J. Gomer, N. Rucker, A. Ferrario and S. Wong, “Properties and applications of photodynamic therapy”, Radiat. Res. 120:1 (1989)

    Article  Google Scholar 

  23. A. J. Dorner, M. G. Krane and R. J. Kaufman, “Reduction of endogenous GRP78 levels improves secretion of a heterologous protein in CHO cells”, Mol. Cell. Biol. 8:4063 (1988)

    Google Scholar 

  24. I. A. S. Drummond, A. S. Lee, E. Resendez and R. A. Steinhardt, “Depletion of intracellular calcium stores by calcium ionophore A23187 induces the genes for glucose-regulated proteins in hamster fibroblasts”, J. Biol. Chem. 262:12801 (1987)

    Google Scholar 

  25. A. S. Lee, “The accumulation of three specific proteins related to glucose-regulated proteins in a temperature-sensitive mutant cell line K12”, J. Cell. Physiol. 106:119 (1981)

    Article  Google Scholar 

  26. W. G. Roberts, F.-Y. Shiau, J. S. Nelson, K. M. Smith and M. W. Berns, “In vitro characterization of monoaspartyl chlorin e6 and diaspartyl chlorin e6 for photodynamic therapy”, J. Natl. Cancer Inst. 80:330 (1988)

    Article  Google Scholar 

  27. M. W. Berns, A. Dahlman, F. M. Johnson, R. Burns, D. Sperling, M. Guiltinan, A. Siemens, R. Walter, W. Wright, M. Hammer-Wilson and A. Wile, “In-vitro cellular effects of hematoporphyrin derivative”, Cancer res. 42:2325 (1982)

    Google Scholar 

  28. J.-W. Shen, J. R. Subjeck, R. B. Lock and W. E. Ross, “Depletion of topoisomerase II in isolated nuclei during a glucose-regulated stress response”, Mol. Cell. Biol. 9:3284 (1989)

    Google Scholar 

  29. S. M. Waldow and T. J. Dougherty, “Interaction of hyperthermia and photodynamic therapy”, Radiat. Res. 97:380 (1984)

    Article  Google Scholar 

  30. C. J. Gomer, N. Rucker and S. Wong, “Porphyrin photosensitivity in cell lines expressing a heat resistant phenotype”, accepted for publication: Cancer Res. 1990

    Google Scholar 

  31. J. Gomer, A. Ferrario, N. Hayasji, N. Rucker, B. C. Szirth and A. L. Murphree, “Molecular, cellular, and tissue responses following photodynamic therapy”, Lasers Surg. Med. 8:450 (1988)

    Article  Google Scholar 

  32. S. M. Keyse and R. M. Tyrrel, “Heme oxygenase is the major 32-kDa stress protein induced in human skin fibroblasts by UVA radiation, hydrogen peroxide, and sodium arsenate”, Proc. Natl. Acad. Sci. USA 86:99 (1989)

    Article  ADS  Google Scholar 

  33. S. M. Keyse and R. M. Tyrrel, “Both near ultraviolet radiation and the oxidizing agent hydrogen peroxide induce a 32-kDa stress protein in normal human skin fibroblasts”, J. Biol. Chem. 262-142821 (1987)

    Google Scholar 

  34. D. K. Luttrull, O. Valdes-Aguilera, S. M. Linden, J. Paczkowski and D. J. Neckers, “Rose Bengal aggregation in rationally synthetized dimeric systems”, Photochem. Photobiol. 47:55 (1988)

    Article  Google Scholar 

  35. J. Alam, S. Shibahara and A. Smith, “Transcriptional activation of heme oxygenase gene by heme and cadmium in mouse hepatoma cells”, J. Biol. Chem. 264:6371 (1989)

    Google Scholar 

  36. H. Kageyama, T. Hiwasa, K. Tokunaga and S. Sakiyama, “Isolation and characterization of a complementary DNA clone for a M 32,000 protein which is induced with tumor promoters in Balb?c3T3 cells”, Cancer Res. 48:4795 (1988)

    Google Scholar 

  37. C. J. Gomer, A. Ferrario and A. L. Murphree, “The effect of localized photodynamic therapy on the induction of tumor metastasis”, Br. J. Cancer 56:27 (1987)

    Article  Google Scholar 

  38. C. A. Elmets and K. D. Bowen, “Immunological suppression in mice treated with hematoporphyrin derivative photoradiation”, Cancer Res. 46:168 (1986)

    Google Scholar 

  39. V. H. Fingar, T. J. Wieman and K. W. Doak, “Role of thromboxane and prostacyclin release on photodynamic therapy-induced tumor destruction”, Cancer res. 50: 2599 (1990)

    Google Scholar 

  40. A. Ferrario and C. J. Gomer, “Systemic toxicity in mice induced by localized porphyrin photodynamic therapy”, Cancer Res. 50:539 (1990)

    Google Scholar 

  41. J. van Lier, personal communication

    Google Scholar 

  42. T. J. Dougherty, Photodynamic therapy (PDT) of malignant tumor”, CRC Crit. Rev. 2:83 (1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Plenum Press, New York

About this chapter

Cite this chapter

Ferrario, A., Rucker, N., Wong, S., Luna, M., Gomer, C.J. (1991). Targets and Mechanisms of Action Associated with Laser Mediated Photosensitization. In: Chester, A.N., Martellucci, S., Scheggi, A.M. (eds) Laser Systems for Photobiology and Photomedicine. NATO ASI Series, vol 252. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-7287-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-7287-5_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-7289-9

  • Online ISBN: 978-1-4684-7287-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics