Skip to main content

Nervous System Glycoproteins

Molecular Properties and Possible Functions

  • Chapter
The Biology of Glycoproteins

Abstract

One of the goals of the cellular neurobiologist is to acquire information on the structure and function of membrane components at a molecular level. Within this area of study, one of the major interests has focused on membrane glycoproteins. Plasma membranes that have most attracted the interests of neuroscientists are membranes that are structurally or functionally distinct to the nervous system, e.g., membranes that make up axons, dendrites, growing neurites, synaptic vesicles, myelin, and synaptic junctions. The brain contains a vast diversity of cell types, both neuronal and nonneuronal; cellular entities that differ on the basis of anatomical location and neurophysiological properties. Thus, studies during the past two decades have concentrated on the identification and characterization of membrane glycoproteins that may be useful in distinguishing, or are unique to, specific classes of neurons, and more recently, different types of synapses. Advances in the areas of biochemistry, cellular and subcellular fractionation, cytochemistry, and immunology have made possible new approaches that have lead to a better understanding of the molecular and functional properties of membrane glycoproteins in the nervous system. One of the ultimate goals of the neurobiologist is to dissect the synapse into its constituent molecules and to elucidate the structural and functional contribution of each, and then in a synthetic approach, to determine intermolecular relationships that will provide a comprehensive understanding of how the synapse works. The development of procedures to isolate subcellular fractions highly enriched in subsynaptic structures such as synaptic junctions and postsynaptic densities has made possible the beginning of this difficult and complex task. The ability to adapt and grow cellular elements of nervous tissues under defined culture conditions has made possible the study of specific physiological and cell-cell interaction properties of individual neurons. The ability to culture embryonic neurons now allows one to study the behavior and molecular properties of neurons as they differentiate and form synaptic connections.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbs, M. T., and Phillips, J. H., 1980, Organization of the proteins of the chromaffin granule membrane, Biochim. Biophys. Acta 595: 200–221.

    Article  PubMed  CAS  Google Scholar 

  • Aguayo, A. J., Brag, G. M., Perkins, C. S., and Duncan, I. D., 1979, Axon-sheath cell interactions in peripheral and central nervous system transplants, Soc. Neurosci. Symp. 4: 361–383.

    Google Scholar 

  • Allen, W. S., Otterbein, C., Varma, R., Varma, R. S., and Wardi, A. H., 1976, Nondialyzable sulfated sialoglycopeptide fractions derived from bovine heifer brain glycoproteins: Isolation, characterization, and carbohydrate—peptide linkage studies, J. Neurochem. 26: 879–885.

    Article  PubMed  CAS  Google Scholar 

  • Anholt, R., Lindstrom, J., and Montai, M., 1980, Functional equivalence of monomeric and dimeric forms of purified acetylcholine receptors from Torpedo californica in reconstituted lipid vesicles, Eur. J. Biochem. 109: 481–487.

    Article  PubMed  CAS  Google Scholar 

  • Barbarash, G. R., Figlewicz, D. A., and Quarles, R. H., 1981, Myelin associated glycoprotein: Purification and partial characterization, Trans. Am. Soc. Neurochem. 12: 165.

    Google Scholar 

  • Barondes, S. H. (ed.), 1976, Neuronal Recognition, Plenum Press, New York.

    Google Scholar 

  • Barondes, S. H., and Rosen, S. D., 1976, Cell surface carbohydrate-binding proteins: Role in cell recognition, in: Neuronal Recognition ( S. H. Barondes, ed.), pp. 332–356, Plenum Press, New York.

    Chapter  Google Scholar 

  • Barondes, S. H., Rosen, S. D., Simpson, D. L., and Kafka, J. A., 1974, Agglutinins of formalinized erythrocytes: Changes in activity with development of Dictyostelium discoideum and embryonic chick brain, in: Dynamics of Degeneration and Growth in Neurons ( F. K. Olson and Y. Zotterman, eds.), pp. 449–454, Pergamon Press, Elmsford, N.Y.

    Google Scholar 

  • Beach, R., Kelly, P. T., Babitch, J., and Cotman, C. W., 1981, Identification of myosin in isolated synaptic junctions, Brain Res. 225: 75–95.

    Article  PubMed  CAS  Google Scholar 

  • Bittiger, H., and Schnebli, H. P., 1974, Binding of concanavalin A and ricin to synaptic junctions of rat brain, Nature (London) 249: 370–371.

    Article  CAS  Google Scholar 

  • Blomberg, F., Cohen, R. S., and Siekevitz, P., 1977, The structure of postsynaptic densities isolated from dog cerebral cortex. II. Characterization and arrangement of some major proteins within the structure, J. Cell Biol. 74: 204–225.

    Article  PubMed  CAS  Google Scholar 

  • Bloom, F. E., 1970, Correlating structure and function of synaptic ultrastructure, in: The Neurosciences: Second Study Program ( E. D. Schmidt, ed.), p. 729, The Rockefeller University Press, New York.

    Google Scholar 

  • Bondareff, W., 1967, An intercellular substance in rat cerebral cortex: Submicroscopic distribution of ruthenium red, Anat. Rec. 157: 527–536.

    Article  CAS  Google Scholar 

  • Bondareff, W., and Sjöstrand, J., 1969, Cytochemistry of synaptosomes, Exp. Neurol. 24: 450–458.

    Article  PubMed  CAS  Google Scholar 

  • Bourguignon, L. Y. W., and Singer, S. J., 1977, Transmembrane interactions and the mechanism of capping of surface receptors by their specific ligands, Proc. Natl. Acad. Sci. USA 74: 5031–5035.

    Article  PubMed  CAS  Google Scholar 

  • Brackenbury, R., Thiery, J.-P., Rutishauser, U., and Edelman, G. M., 1977, Adhesion among neural cells of the chick embryo, J. Biol. Chem. 252: 6835–6840.

    PubMed  CAS  Google Scholar 

  • Branton, D., Cohen, C. M., and Tyler, J., 1981, Interaction of cytoskeletal proteins on the human erythrocyte membrane, Cell 24: 24–32.

    Article  PubMed  CAS  Google Scholar 

  • Bray, D., 1970, Surface movements during the growth of single explanted neurons, Proc. Natl. Acad. Sci. USA 65: 905–910.

    Article  PubMed  CAS  Google Scholar 

  • Bray, D., 1973, Branching patterns of isolated sympathetic neurons, J. Cell Biol. 56: 702–712.

    Article  PubMed  CAS  Google Scholar 

  • Breckenridge, W. C., Breckenridge, J. E., and Morgan, I. G., 1972, Glycoproteins of the synaptic region, Adv. Exp. Med. Biol. 32: 135–153.

    PubMed  CAS  Google Scholar 

  • Brostoff, S. W., 1977, Immunological responses to myelin and components, in: Myelin ( P. Morell, ed.), pp. 415–446, Plenum Press, New York.

    Google Scholar 

  • Brostoff, S. W., Karkhanis, Y. D., Carlo, D. J., Reuter, W., and Eylar, E. H., 1975, Isolation and partial characterization of the major proteins of rabbit sciatic nerve myelin, Brain Res. 86: 449–458.

    Article  CAS  Google Scholar 

  • Brostoff, S. W., Levit, S., and Powers, J., 1977, Isolation of a disease inducing peptide from bovine PNS myelin P2 protein, Trans. Am. Soc. Neurochem. 8: 205.

    Google Scholar 

  • Brunngraber, E. G., 1972, Biochemistry, function and neuropathology of glycoproteins in brain tissue, in: Function and Structural Proteins of the Nervous System ( A. N. Davison, P. Mandel, and I. G. Morgan, eds.), pp. 109–133, Plenum Press, New York.

    Google Scholar 

  • Brunngraber, E. G., and Brown, B. D., 1964, Fractionation of brain macromolecules. II. Isolation of protein-linked sialomucopolysaccharides from subcellular, particulate fractions from rat brain, J. Neurochem. 11: 449–459.

    Article  PubMed  CAS  Google Scholar 

  • Brunngraber, E. G., Aro, A., and Brown, B. D., 1970, Differential determination of glucosamine, galactosamine, and mannosamine in glycopeptides derived from brain tissue glycoproteins, Clin. Chim. Acta 29: 333–342.

    Article  PubMed  CAS  Google Scholar 

  • Brunngraber, E. G., Hof, H., Susz, J., Brown, B. D., Aro, A., and Chang, I., 1973, Glycopeptides from rat brain glycoproteins, Biochim. Biophys. Acta 304: 781–796.

    Article  PubMed  CAS  Google Scholar 

  • Burden, S. J., Sargent, P. B., and McMahan, U. T., 1979, Acetylcholine receptors in regenerating muscle accumulate at original synaptic sites in the absence of the nerve, J. Cell Biol. 82: 412–425.

    Article  PubMed  CAS  Google Scholar 

  • Buskirk, D. R., Thiery, J.-P., Rutishauser, U., and Edelman, G. M., 1980, Antibodies to a neural cell adhesion molecule disrupt histogenesis in cultured chick retina, Nature (London) 285: 488–489.

    Article  CAS  Google Scholar 

  • Carlin, R. K., Grab, D. J., Cohen, R. S., and Siekevitz, P., 1980, Isolation and characterization of postsynaptic densities from various brain regions: Enrichment of different types of postsynaptic densities, J. Cell Biol. 86: 831–843.

    Article  PubMed  CAS  Google Scholar 

  • Cartaud, J., Benedetti, E. L., Cohen, J. B., Meunier, J.-C., and Changeux, J.-P., 1973, Presence of a lattice structure in membrane fragments rich in nicotinic receptor protein from the electric organ of Torpedo marmorata, FEBS Lett. 33: 109–113.

    Article  PubMed  CAS  Google Scholar 

  • Chuong, C.-M., McClain, D. A., Streit, P., and Edelman, G. M., 1982, Neural cell adhesion molecules in rodent brains isolated by monoclonal antibodies with cross-species reactivity, Proc. Natl. Acad. Sci. USA 79: 4234–4238.

    Article  PubMed  CAS  Google Scholar 

  • Churchill, L., Cotman, C., Banker, G., Kelly, P., and Shannon, L., 1976, Carbohydrate composition of central nervous system synapses: Analysis of isolated synaptic junctional complexes and postsynaptic densities, Biochim. Biophys. Acta 448: 57–72.

    Article  PubMed  CAS  Google Scholar 

  • Claudio, T., and Raftery, M. A., 1977, Immunological comparison of acetylcholine receptors and their subunits from species of electric ray, Arch. Biochem. Biophys. 181: 484–489.

    Article  PubMed  CAS  Google Scholar 

  • Colonnier, M., 1968, Synaptic patterns on different cell types in the different laminae of the cat visual cortex: An electron microscope study, Brain Res. 9: 268–287.

    Article  PubMed  CAS  Google Scholar 

  • Conti-Tronconi, B. M., and Raftery, M. A., 1982, The nicotinic cholinergic receptor: Correlation of molecular structure with functional properties, Annu. Rev. Biochem. 51: 491–530.

    Article  PubMed  CAS  Google Scholar 

  • Cotman, C. W., and Banker, G. A., 1974, The making of a synapse, in: Reviews of Neuroscience, Vol. 1 ( S. Ehrenpreis and I. J. Kopin, eds.), pp. 1–62, Raven Press, New York.

    Google Scholar 

  • Cotman, C. W., and Kelly, P. T., 1980, Macromolecular architecture of CNS synapses, in: The Cell Surface and Neuronal Function ( C. W. Cotman, G. Poste, and G. L. Nicolson, eds.) pp. 505–533, Elsevier/North-Holland, Press, Amsterdam.

    Google Scholar 

  • Cotman, C. W., and Taylor, D., 1972, Isolation and structural studies on synaptic complexes from rat brain, J. Cell Biol. 55: 697–711.

    Article  Google Scholar 

  • Cotman, C. W., and Taylor, D., 1974, Localization and characterization of concanavalin A receptors in the synaptic cleft, J. Cell Biol. 62: 236–242.

    Article  PubMed  CAS  Google Scholar 

  • Damle, V. N., and Karlin, A., 1978, Affinity labeling of one of two a-neurotoxin binding sites in acetylcholine receptor from Torpedo californica, Biochemistry 17: 2039–2045.

    Article  PubMed  CAS  Google Scholar 

  • Davis, G., and Bloom, F. E., 1973, Isolation of synaptic junctional complexes from rat brain, Brain Res. 62: 135–153.

    Article  PubMed  CAS  Google Scholar 

  • deSilva, N. S., Gurd, J. W., and Schwartz, C., 1979, Developmental alterations of rat brain synaptic membranes: Reaction of glycoproteins with plant lectins, Brain Res. 165: 283–293.

    Article  CAS  Google Scholar 

  • Di Benedetta, C., Brunngraber, E. G., Whitney, G., Brown, B. D., and Aro, A., 1969, Compositional patterns of sialofucohexosaminoglycans derived from rat brain glycoproteins, Arch. Biochem. Biophys. 131: 404–413.

    Article  PubMed  Google Scholar 

  • Elder, J. H., Pickett, R. A., Hampton, J., and Lerner, R. A., 1977, Radioiodination of proteins in single polyacrylamide gel slices, J. Biol. Chem. 252: 6510–6515.

    PubMed  CAS  Google Scholar 

  • Epstein, M., and Racker, E., 1978, Reconstitution of carbamylcholine-dependent sodium ion flux and desensitization of the acetylcholine receptor from Torpedo californica, J. Biol. Chem. 253: 6660–6662.

    PubMed  CAS  Google Scholar 

  • Everly, J. L., Brady, R. O., and Quarles, R. H., 1973, Evidence that the major protein in rat sciatic nerve myelin is a glycoprotein, J. Neurochem. 21: 329–334.

    Article  PubMed  CAS  Google Scholar 

  • Figlewicz, D. A., Quarles, R. H., Johnson, D., Barbarash, G. R., and Sternberger, N. H., 1982, Biochemical demonstration of the myelin-associated glycoprotein in the peripheral nervous system, J. Neurochem. 37: 749–758.

    Article  Google Scholar 

  • Finne, J., and Krusius, T., 1982, Preparation and fractionation of glycopeptides, Methods Enzymol. 83: 269–277.

    Article  PubMed  CAS  Google Scholar 

  • Finne, J., Krusius, T., Rauvala, H., and Hemminki, K., 1977, The disialosyl group of glycoproteins: Occurrences in different tissues and cellular membranes, Eur. J. Biochem. 77: 319–323.

    Article  PubMed  CAS  Google Scholar 

  • Fischer-Colbrie, R., Schachinger, M., Zangerle, R., and Winkler, H., 1982, Dopamine 3hydroxylase and other glycoproteins from the soluble content and the membranes of adrenal chromaffin granules: Isolation and carbohydrate analysis, J. Neurochem. 38: 725–732.

    Article  PubMed  CAS  Google Scholar 

  • Fiszer, S., and De Robertis, E., 1967, Action of Triton X-100 on ultrastructure and membrane-bound enzymes of isolated nerve endings from rat brain, Brain Res. 5: 31–44.

    Article  PubMed  CAS  Google Scholar 

  • Froehner, S. C., and Rafto, S., 1979, Comparison of the subunits of Torpedo californica acetylcholine receptor by peptide mapping, Biochemistry 18: 301–307.

    Article  PubMed  CAS  Google Scholar 

  • Fu, S. C., Cruz, T. F., and Gurd, J. W., 1981, Development of synaptic glycoproteins: Effect of postnatal age on the synthesis and concentration of synaptic membrane and synaptic junctional fucosyl and sialyl glycoproteins, J. Neurochem. 36: 1338–1351.

    Article  PubMed  CAS  Google Scholar 

  • Gaze, R. M. (ed.), 1970, The Formation of Nerve Connections, Academic Press, New York.

    Google Scholar 

  • Giannattasio, G., Zanini, A., and Meldolesi, J., 1979, Complex carbohydrates of secretory organelles, in: Complex Carbohydrates of Nervous Tissue ( R. U. Margolis and R. K. Margolis, eds.), pp. 327–345, Plenum Press, New York.

    Chapter  Google Scholar 

  • Giannattasio, G., Zanini, A., Rosa, P., Meldolesi, J., Margolis, R. K., and Margolis, R. U., 1980, Molecular organization of prolactin granules. III. Intracellular transport of sulfated glycosaminoglycans and glycoproteins of the bovine prolactin granule matrix, J. Cell Biol. 86: 273–279.

    Article  PubMed  CAS  Google Scholar 

  • Glenney, J. R., Glenney, P., and Weber, K., 1982, Erythroid spectrin, brain fodrin, and intestinal brush border proteins (TW-260/240) are related molecules containing a common calmodulin-binding subunit bound to a variant cell type-specific subunit, Proc. Natl. Acad. Sci. USA 79: 4002–4005.

    Article  PubMed  CAS  Google Scholar 

  • Gombos, G., and Zanetta, J. P., 1978, Recent methods for the separation and analysis of central nervous system glycoproteins, in: Research Methods in Neurochemistry, Vol. 4 ( N. Marks and R. Rodnight, eds.), pp. 307–343, Plenum Press, New York.

    Google Scholar 

  • Gonzales-Ros, J. M., Paraschos, A., and Martinez-Carrion, M., 1980, Reconstitution of functional membrane-bound acetylcholine receptor from isolated Torpedo californica receptor protein and electroplax lipids, Proc. Natl. Acad. Sci. USA 77: 1796–1800.

    Article  Google Scholar 

  • Goodrum, J. F., Bosmann, H. B., and Tanaka, R., 1979, Glycoprotein galactosyltransferase activity in synaptic junctional complexes isolated from rat forebrain, Neurochem. Res. 4: 331–337.

    Article  PubMed  CAS  Google Scholar 

  • Gould, R. M., 1977, Incorporation of glycoproteins into peripheral nerve myelin, J. Cell Biol. 75: 326–338.

    Article  PubMed  CAS  Google Scholar 

  • Grab, D. J., Berzins, K., Cohen, R. S., and Siekevitz, P., 1979, Presence of calmodulin in PSDs isolated from canine cerebral cortex, J. Biol. Chem. 254: 8690–8696.

    PubMed  CAS  Google Scholar 

  • Gray, E. G., 1959, Axo-somatic and axo-dendritic synapses of the cerebral cortex: An electron microscope study, J. Anat. 93: 420–430.

    PubMed  CAS  Google Scholar 

  • Groswald, D. E., Montgomery, P. R., and Kelly, P. T., 1982, Type I, asymmetric synapses from the rat cerebellum, Soc. Neurosci. Abstr. 116: 1

    Google Scholar 

  • Groswald, D. E., Montgomery, P. R., and Kelly, P. T., 1983, Synaptic junctions isolated from cerebellum and forebrain: comparisons of morphological and molecular properties, Brain Res. 278: 63–80.

    Article  PubMed  CAS  Google Scholar 

  • Groswold, D. E., and Kelly, P. T., 1984, Evidence that a cerebellum-enriched synaptic junction glycoprotein is related to fodrin and resists extractin with Triton in a calcium-dependent manner, J. Neurochem. 42: 534–546.

    Article  Google Scholar 

  • Grumet, M., Rutishauser, U., and Edelman, G. M., 1982, Neural cell adhesion molecule is on embryonic muscle cells and mediates adhesion to nerve cells in vitro, Nature (London) 295: 693–695.

    Article  CAS  Google Scholar 

  • Gullick, W. J., Tzartos, S., and Lindstrom, J., 1981, Monoclonal antibodies as probes of acetylcholine receptor structure. 1. Peptide mapping, Biochemistry 20: 2173–2180.

    Article  PubMed  CAS  Google Scholar 

  • Gurd, J. W., 1977, Identification of lectin receptors associated with rat brain PSDs, Brain Res. 126: 154–159.

    Article  PubMed  CAS  Google Scholar 

  • Gurd, J. W., 1980, Subcellular distribution and partial characterization of the three major classes of concanavalin A receptors associated with rat brain synaptic junctions, Can. J. Biochem. 58: 941–951.

    Article  PubMed  CAS  Google Scholar 

  • Gurd, J. W., 1982, Molecular characterization of synapses of the central nervous system, in: Molecular Approaches to Neurobiology (I. R. Brown, ed.), pp. 99–130, Academic Press, New York.

    Google Scholar 

  • Gurd, J. W., and Fu, S. C., 1982, Concanavalin A receptors associated with rat brain synaptic junctions are high mannose-type oligosaccharides, J. Neurochem. 39: 719–725.

    Article  PubMed  CAS  Google Scholar 

  • Gurd, J. W., Bisson, N., and Kelly, P. T., 1983, Synaptic junction glycoproteins are phosphorylated by cyclic-AMP dependent protein kinases, Brain Res. 269: 287–296.

    Article  PubMed  CAS  Google Scholar 

  • Gurd, J. W., Gordon-Weeks, P., and Evans, W. H., 1982, Biochemical and morphological comparisons of PSDs prepared from rat, hamster, and monkey brains by phase partitioning, J. Neurochem. 39: 1117–1124.

    Article  PubMed  CAS  Google Scholar 

  • Hamburger, V., 1962, Specificity in neurogenesis, J. Cell. Comp. Physiol. 60 (Suppl.): 8192.

    Google Scholar 

  • Hausman, R. E., and Moscona, A. A., 1975, Purification and characterization of the retinaspecific cell-aggregating factor, Proc. Natl. Acad. Sci. USA 72: 916–920.

    Article  PubMed  CAS  Google Scholar 

  • Hausman, R. E., and Moscona, A. A., 1976, Isolation of retina-specific cell-aggregating factor from membranes of embryonic neural retina tissue, Proc. Natl. Acad. Sci. USA 73: 3594–3598.

    Article  PubMed  CAS  Google Scholar 

  • Hausman, R. E., and Moscona, A. A., 1979, Immunologic detection of retina cognin on the surface of embryonic cells, Exp. Cell Res. 119: 191–204.

    Article  PubMed  CAS  Google Scholar 

  • Hazelbauer, G. L., and Changeux, J.-P., 1979, Reconstitution of a chemically excitable membrane, Proc. Natl. Acad. Sci. USA 71: 1479–1483.

    Article  Google Scholar 

  • Heuser, J. E., and Reese, T. S., 1973, Evidence for recycling of synaptic vesicle membrane during transmitter release at the frog neuromuscular junction, J. Cell Biol. 57: 315–344.

    Article  PubMed  CAS  Google Scholar 

  • Heuser, J. E., Reese, T. S., Dennis, M. J., Jan, L., and Evans, L., 1979, Synaptic vesicle exocytosis captured by quick freezing and correlated with quantal transmitter release, J. Cell Biol. 81: 275–300.

    Article  PubMed  CAS  Google Scholar 

  • Hoffman, S., Sorkin, B. C., White, P. C., Brackenbury, R., Mailhammer, R., Rutishauser, U., Cunningham, B. A., and Edelman, G. M., 1982, Chemical characterization of a neural cell adhesion molecule purified from embryonic brain membranes, J. Biol. Chem. 257: 7720–7729.

    PubMed  CAS  Google Scholar 

  • Huber, E., König, P., Schuler, G., Aberer, W., Plattner, H., and Winkler, H., 1979, Characterization and topography of the glycoproteins of adrenal chromaffin granules, J. Neurochem. 32: 35–47.

    Article  PubMed  CAS  Google Scholar 

  • Hughes, A. F., 1953, The growth of embryonic neurites: A study of cultures of chick neural tissue, J. Anat. 87: 150–162.

    PubMed  CAS  Google Scholar 

  • Ishaque, A., Roomi, M. W., Szymanska, I., Kowalski, S., and Eylar, E. H., 1980, The Po glycoprotein of peripheral nerve myelin, Can. J. Biochem. 58: 913–921.

    PubMed  CAS  Google Scholar 

  • Jacobson, M., 1970, Developmental Neurobiology, Holt, Rinehart & Winston, New York.

    Google Scholar 

  • Jakoi, E. R., and Marchase, R. B., 1979, Ligatin from embryonic chick neural retina, J. Cell Biol. 80: 642–650.

    Article  PubMed  CAS  Google Scholar 

  • Jorgensen, O. S., Delouvee, A., Thiery, J.-P., and Edelman, G. M., 1980, The nervous system specific protein D2 is involved in adhesion among neurites from cultured rat ganglia, FEBS Lett. 111: 39–42.

    Article  PubMed  CAS  Google Scholar 

  • Karlin, A., 1980, Molecular properties of nicotinic acetylcholine receptors, in: The Cell Surface and Neuronal Function ( C. W. Cotman, G. Poste, and G. L. Nicolson, eds.), pp. 191–260, Elsevier/North-Holland, Amsterdam.

    Google Scholar 

  • Karlsson, E., Heilbronn, E., and Widlund, L., 1972, Isolation of the nicotinic acetylcholine receptor by biospecific chromatography on insolubilized Naja naja neurotoxin, FEBS Lett. 28: 107–111.

    Article  PubMed  CAS  Google Scholar 

  • Kelly, P. T., and Cotman, C. W. 1977, Identification of glycoproteins and proteins at synapses in the central nervous system, J. Biol. Chem. 252: 786–793.

    PubMed  CAS  Google Scholar 

  • Kelly, P. T., and Cotman, C. W., 1978, Characterization of tubulin and actin and identification of a distinct postsynaptic density polypeptide, J. Cell Biol. 79: 173–183.

    Article  PubMed  CAS  Google Scholar 

  • Kelly, P. T., and Cotman, C. W., 1981, Developmental changes in morphology and molecular composition of isolated synaptic junctional structures, Brain Res. 206: 251–271.

    Article  PubMed  CAS  Google Scholar 

  • Kelly, P. T., and Montgomery, P. R., 1982, Subcellular localization of the 52,000 molecular weight major postsynaptic density protein, Brain Res. 233: 265–286.

    Article  PubMed  CAS  Google Scholar 

  • Kelly, P., Cotman, C. W., Gentry, C., and Nicolson, G. L., 1976, Distribution and mobility of lectin receptors on synaptic membranes of identified neurons in the central nervous system, J. Cell Biol. 71: 487–496.

    Article  PubMed  CAS  Google Scholar 

  • Kelly, P. T., Largen, M., and Cotman, C. W., 1979, Cyclic AMP-stimulated protein kinases at brain synaptic junctions, J. Biol. Chem. 254: 1564–1575.

    PubMed  CAS  Google Scholar 

  • Kelly, P. T. McGuinness, T. L., and Greengard, P., 1983, Calcium/calmodulin-dependent phosphorylation in synaptic junctions, Soc. Neurosci. Abstr. 296. 19.

    Google Scholar 

  • Kelly, P. T., McGuinness, T. L., and Greengard, P., 1984, Evidence that the major PSD protein is a component of a calcium/calmodulin-dependent protein kinase, Proc. Natl. Acad. Sci. U.S.A. 81: 945–949.

    Article  PubMed  CAS  Google Scholar 

  • Kinders, R. J., and Johnson, T. C., 1981, Glycopeptides prepared from mouse cerebrum inhibit protein synthesis and cell division in baby hamster kidney cells, but not in their polyoma virus-transformed analogs, Exp. Cell Res. 136: 31–41.

    Article  PubMed  CAS  Google Scholar 

  • Kinders, R. J., and Johnson, T. C., 1982, Isolation of cell-surface glycopeptides from bovine cerebral cortex that inhibit cell growth and protein synthesis in normal but not in transformed cells, Biochem. J. 206: 1–9.

    Google Scholar 

  • Kinders, R., Johnson, T., and Rachmeler, M., 1979, An inhibitor of protein synthesis prepared by protease treatment of mouse cerebral cortex cells, Life Sci. 24: 43–50.

    Article  PubMed  CAS  Google Scholar 

  • Kinders, R. J., Hughes, J. V., and Johnson, T. C., 1980a, Glycopeptides from brain inhibit rates of polypeptide chain elongation, J. Biol. Chem. 255: 6368–6372.

    PubMed  CAS  Google Scholar 

  • Kinders, R. J., Milenkovic, A. G., Nordin, P., and Johnson, T. C., 1980b, Characterization of cell-surface glycopeptides from mouse cerebral cortex that inhibit cell growth and protein synthesis, Biochem. J. 190: 605–614.

    CAS  Google Scholar 

  • Kinders, R. J., Rintoul, D. A., and Johnson, T. C., 1982, Ganglioside GMI sensitizes tumor cells to growth inhibitory glycopeptides, Biochem. Biophys. Res. Commun. 107: 663–669.

    Article  PubMed  CAS  Google Scholar 

  • Kitamura, K., Suzuki, M., and Uyemura, K., 1976, Purification and partial characterization of two glycoproteins in bovine peripheral nerve myelin membrane, Biochim. Biophys. Acta 455: 806–816.

    Article  PubMed  CAS  Google Scholar 

  • Kobiler, D., Beyer, E. C., and Barondes, S. H., 1978, Developmentally regulated lectins from chick muscle, brain and liver have similar chemical and immunological properties, Dev. Biol. 64: 265–272.

    Article  PubMed  CAS  Google Scholar 

  • Krusius, T., and Finne, J., 1977, Structural features of tissue glycoproteins: Fractionation and methylation analysis of glycopeptides derived from rat brain, kidney and liver, Eur. J. Biochem. 78: 369–379.

    Article  PubMed  CAS  Google Scholar 

  • Krusius, T., and Finne, J., 1978, Characterization of a novel sugar sequence from rat brain glycoproteins containing fucose and sialic acid, Eur. J. Biochem. 84: 395–403.

    Article  PubMed  CAS  Google Scholar 

  • Krusius, T., Finne, J., Margolis, R. U., and Margolis, R. K., 1978, Structural features of microsomal, synaptosomal, mitochondrial and soluble glycoproteins of brain, Biochemistry 17: 3849–3854.

    Article  PubMed  CAS  Google Scholar 

  • Lentz, T. L., and Chester, J., 1977, Localization of acetylcholine receptors in central synapses, J. Cell Biol. 72: 258–267.

    Article  Google Scholar 

  • Levine, L., and Willard, M., 1981, Fodrin: Axonally transported polypeptides associated with the internal periphery of many cells, J. Cell Biol. 90: 631–643.

    Article  PubMed  CAS  Google Scholar 

  • Lindstrom, J., Einarson, B., and Merlie, J., 1978, Immunization of rats with polypeptide chains from Torpedo acetylcholine receptor causes an autoimmune response to receptors in rat muscle, Proc. Natl. Acad. Sci. USA 75: 769–773.

    Article  PubMed  CAS  Google Scholar 

  • Lindstrom, J., Merlie, J., and Yogeeswaran, G., 1979a, Biochemical properties of acetyl- choline receptor subunits from Torpedo californica, Biochemistry 18: 4465–4470.

    Article  PubMed  CAS  Google Scholar 

  • Lindstrom, J., Walter, B., and Einarson, B., 1979b, Immunochemical similarities between subunits of acetylcholine receptors from Torpedo electrophorus, and mammalian muscle, Biochemistry 18: 4470–4480.

    Article  CAS  Google Scholar 

  • Lingappa, V. R., Katz, F. N., Lodish, H. F., and Blobel, G., 1978, A signal sequence for the insertion of a transmembrane glycoprotein: Similarities in the secretory proteins in primary structure and function, J. Biol. Chem. 253: 8667–8670.

    PubMed  CAS  Google Scholar 

  • Lodish, H. F., and Rothman, J. E., 1979, The assembly of cell membranes, Sci. Am. 240: 4863.

    Article  Google Scholar 

  • Luttges, M. W., Kelly, P. T., and Gerren, R. A., 1976, Degenerative changes in mouse sciatic nerves: Electrophoretic and electrophysiologic characterizations, Exp. Neurol. 50: 706–733.

    Article  PubMed  CAS  Google Scholar 

  • McClain, D. A., and Edelman, G. M., 1982, A neural cell adhesion molecule from human brain, Proc. Natl. Acad. Sci. USA 79: 6380–6384.

    Article  PubMed  CAS  Google Scholar 

  • McIntyre, R. J., Quarles, R. H., Webster, H. deF., and Brady, R. O., 1978, Isolation and characterization of myelin-related membranes, J. Neurochem. 30: 991–1002.

    Article  PubMed  CAS  Google Scholar 

  • McQuarrie, C., Salvaterra, P. M., De Blas, A., Routes, J., and Mahler, H. R., 1976, Studies on nicotinic acetylcholine receptors in mammalian brain, J. Biol. Chem. 251: 6335–6339.

    PubMed  CAS  Google Scholar 

  • McQuarrie, C., Salvaterra, P. M., and Mahler, H. R., 1978, Studies on nicotinic acetylcholine receptors in mammalian brain, J. Biol. Chem. 253: 2743–2747.

    PubMed  CAS  Google Scholar 

  • Mahler, H. R., 1979, Glycoproteins of the synapse, in: Complex Carbohyrates of Nervous Tissue ( R. U. Margolis and R. K. Margolis, eds.), pp. 165–184, Plenum Press, New York.

    Chapter  Google Scholar 

  • Marchase, R. B., Harges, P., and Jakoi, E. R., 1981, Ligatin from embryonic chick neural retina inhibits retinal cell adhesion, Dev. Biol. 86: 250–255.

    Article  PubMed  CAS  Google Scholar 

  • Margolis, R. K., and Margolis, R. U., 1970, Sulfated glycopeptides from rat brain glycoproteins, Biochemistry 9: 4389–4396.

    Article  PubMed  CAS  Google Scholar 

  • Margolis, R. K., and Margolis, R. U., 1979, Structure and distribution of glycoproteins and glycosaminoglycans, in: Complex Carbohydrates of Nervous Tissue ( R. U. Margolis and R. K. Margolis, eds.), pp. 45–73, Plenum Press, New York.

    Chapter  Google Scholar 

  • Margolis, R. K., and Margolis, R. U., 1983, Glycoproteins and proteoglycans, in: Handbook of Neurochemistry (A. Lajtha, ed.), pp. 177–204, Vol. 5, 2nd ed., Plenum Press, New York.

    Google Scholar 

  • Margolis, R. K., Margolis, R. U., Preti, C., and Lai, D., 1975, Distribution and metabolism of glycoproteins and glycosaminoglycans in subcellular fractions of brain, Biochemistry 14: 4797–4804.

    Article  PubMed  CAS  Google Scholar 

  • Matthieu, J.-M., Quarles, R. H., Poduslo, J. F., and Brady, R. O., 1975a, [35S]Sulfate incorporation into myelin glycoproteins. I. Central nervous system, Biochim. Biophys. Acta 392: 159–166.

    Article  PubMed  CAS  Google Scholar 

  • Matthieu, J.-M., Everly, J. L., Brady, R. O., and Quarles, R. H., 1975b, [35S]Sulfate incorporation into myelin glycoproteins. II. Peripheral nervous system, Biochim. Biophys. Acta 392: 167–174.

    Article  PubMed  CAS  Google Scholar 

  • Matus, A. I., 1978, The chemical synapse: Structure and function, in: Intercellular Junctions and Synapses ( J. O. Feldman, N. B. Gilula, and J. D. Pitts, eds.), pp. 99–139, Chapman & Hall, London.

    Google Scholar 

  • Matus, A. I., and Walters, B. B., 1975, Ultrastructure of the synaptic junctional lattice isolated from mammalian brain, J. Neurocytol. 4: 369–375.

    Article  PubMed  CAS  Google Scholar 

  • Matus, A., DePetris, S., and Raff, M. C., 1973, Mobility of concanavalin A receptors in myelin and synaptic membranes, Nature New Biol. 244: 278–280.

    Article  PubMed  CAS  Google Scholar 

  • Mena, E. E., and Cotman, C. W., 1982, Synaptic cleft glycoproteins contain homologous amino acid sequences, Science 216: 422–424.

    Article  PubMed  CAS  Google Scholar 

  • Mena, E. E., Foster, A. C., Fagg, G. E., and Cotman, C. W., 1981, Identification of synapse specific components: Synaptic glycoproteins, proteins, and transmitter binding sites, J. Neurochem. 37: 1557–1566.

    Article  PubMed  CAS  Google Scholar 

  • Michaelson, D. M., and Raftery, M. A., 1974, Purified acetylcholine receptor: Its reconstitution to a chemically excitable membrane, Proc. Natl. Acad. Sci. USA 71: 4768–4772.

    Article  PubMed  CAS  Google Scholar 

  • Michaelis, E. K., Michaelis, M. L., and Boyarsky, L. L., 1974, High-affinity glutamic acid binding to brain synaptic membranes, Biochim. Biophys. Acta 367: 338–348.

    Article  PubMed  CAS  Google Scholar 

  • Michaelson, D. M., Duguid, J. R., Miller, D. L., and Raftery, M. A., 1976, Reconstitution of a purified acetylcholine receptor, J. Supramol. Struct. 4: 419–425.

    Article  PubMed  CAS  Google Scholar 

  • Mooseker, M. S., 1976, Brush border motility: Microvillar contraction in Triton-treated brush borders isolated from intestinal epithelium, J. Cell Biol. 71: 417–433.

    Article  PubMed  CAS  Google Scholar 

  • Mooseker, M. S., and Tilney, L. G., 1975, The organization of an actin filament—membrane comples: Filament polarity and membrane attachment in the microvilli of intestinal epithelial cell, J. Cell Biol. 67: 725–743.

    Article  PubMed  CAS  Google Scholar 

  • Morgan, I. G., Gombos, G., and Tettamanti, G., 1977, Glycoproteins and glycolipids of the nervous system, in: The Glycoconjugates ( M. I. Horowitz and W. Pigman, eds.), Vol. 1, pp. 351–383, Academic Press, New York.

    Google Scholar 

  • Nieto-Sampedro, M., Bussineau, C. M., and Cotman, C. W., 1982, Isolation, morphology, and protein and glycoprotein composition of synaptic junctional fractions from the brain of lower vertebrates: Antigen PSD-95 as a junctional marker, J. Neurosci. 2: 722–734.

    PubMed  CAS  Google Scholar 

  • Olsen, R. W., Meunier, J.-C., and Changeux, J.-P., 1972, Progress in the purification of the cholinergic receptor protein from Electrophorus by affinity chromatography, FEBS Lett. 28: 96–100.

    Article  PubMed  CAS  Google Scholar 

  • Patrick, J., Lindstom, J., Culp, B., and McMillan, J., 1973, Studies on purified eel acetylcholine receptor and anti-acetylcholine receptor antibody, Proc. Natl. Acad. Sci. USA 70: 3334–3338.

    Article  PubMed  CAS  Google Scholar 

  • Peterson, R. G., and Gruener, R. W., 1978, Morphological localization of PNS myelin proteins, Brain Res. 152: 17–29.

    Article  PubMed  CAS  Google Scholar 

  • Peterson, R. G., and Pease, D. C., 1972, Myelin imbedded in polymerized glutaraldehyde urea, J. Ultrastruct. Res 41: 115–132.

    Article  PubMed  CAS  Google Scholar 

  • Peterson, R. G., and Sea, C. P., 1975, Localization of the main myelin protein in PNS, Trans. Am. Soc. Neurochem. 6: 211.

    Google Scholar 

  • Pfenninger, K. H., 1973, Synaptic morphology and cytochemistry, Progr. Histochem. Cytochem. 5: 1–86.

    Google Scholar 

  • Pfenninger, K. H., 1978, Organization of neuronal membranes, Annu. Rev. Neurosci. 1: 445–471.

    Article  PubMed  CAS  Google Scholar 

  • Pfenninger, K. H., and Maylie-Pfenninger, M.-F., 1981a, Lectin labeling of sprouting neu- rons. I. Regional distribution of surface glycoconjugates, J. Cell Biol. 89: 536–546.

    Article  PubMed  CAS  Google Scholar 

  • Pfenninger, K. H., and Maylie-Pfenninger, M.-F., 1981b, Lectin labeling of sprouting neurons. II. Relative movement and appearance of glycoconjugates during plasmalemmal expansion, J. Cell Biol. 89: 547–559.

    Article  PubMed  CAS  Google Scholar 

  • Pfenninger, K. H., Ellis, L., Friedman, L. B., Johnson, M. P., and Somlo, S., 1982, Nerve growth cones isolated by subcellular fractionation from fetal rat brain, J. Cell Biol. 95: 95a.

    Google Scholar 

  • Prives, J., Fulton, A. B., Penman, S., Daniels, M. P., and Christian, C. N., 1982, Interaction of the cytoskeletal framework with acetylcholine receptor on the surface of embryonic muscle cells in culture, J. Cell Biol. 92: 231–236.

    Article  PubMed  CAS  Google Scholar 

  • Quarles, R. H., 1976, Effects of Pronase and neuraminidase treatment on a myelin-associated glycoprotein in developing brain, Biochem. J. 156: 143–150.

    PubMed  CAS  Google Scholar 

  • Quarles, R. H., 1979, Glycoproteins in myelin and myelin-related membranes, in: Complex Carbohydrates of Nervous Tissue (R. U. Margolis and R. K. Margolis, eds.), pp. 209233, Plenum Press, New York.

    Google Scholar 

  • Quarles, R. H., and Everly, J. L., 1977, Glycopeptide fractions prepared from purified central and peripheral rat myelin, Biochim. Biophys. Acta 466: 176–186.

    Article  PubMed  CAS  Google Scholar 

  • Quarles, R. H., and Pasnak, C. F., 1977, A rapid procedure for selectively isolating the major glycoprotein from purified rat brain myelin, Biochem. J. 163: 635–637.

    PubMed  CAS  Google Scholar 

  • Quarles, R. H., Everly, J. L., and Brady, R. O., 1973, Evidence for the close association of a glycoprotein with myelin in rat brain, J. Neurochem. 21: 1177–1191.

    Article  PubMed  CAS  Google Scholar 

  • Quarks, R. H., Foreman, C. F., Poduslo, J. F., and McIntyre, L. J., 1977, Interactions of myelin-associated glycoproteins with immoblized lectins, Trans. Am. Soc. Neurochem. 8: 201.

    Google Scholar 

  • Quarles, R. H., Johnson, D., Brady, R. O., and Sternberger, N. H., 1981, Preparation and characterization of antisera to the myelin-associated glycoprotein, Neurochem. Res. 6: 1115–1127.

    Article  PubMed  CAS  Google Scholar 

  • Raftery, M. A., 1973, Isolation of acetylcholine receptor—a-bungarotoxin complexes from Torpedo californica electroplax, Arch. Biochem. Biophys. 154: 270–276.

    Article  PubMed  CAS  Google Scholar 

  • Raftery, M. A., Hunkapiller, M. W., Strader, C. D., and Hood, L. E., 1980, Acetylcholine receptor: Complex of homologous subunits, Science 208: 1454–1457.

    Article  PubMed  CAS  Google Scholar 

  • Rambourg, A., and Leblond, C. P., 1967, Electron microscopic observations on the carbohydrate-rich coat present at the surface of cells in the rat, J. Cell Biol 32: 27–53.

    Article  PubMed  CAS  Google Scholar 

  • Ramón y Cajal, S., 1905, Trab. Lab. Invest. Biol. Univ. Madrid 4:219, in: Studies on Vertebrate Neurogenesis (L. Guth, transl.), pp. 5–70, Thomas, Springfield, Ill.

    Google Scholar 

  • Ramon y Cajal, S., 1908, Anat. Anz. 32:1–65, in: Studies on Vertebrate Neurogenesis (L. Guth, transl.), pp. 71–116, Thomas, Springfield, Ill.

    Google Scholar 

  • Roomi, M. W., and Eylar, E. H., 1978, Isolation of a product from the trypsin-digested glycoprotein of sciatic nerve myelin, Biochim. Biophys. Acta 536: 122–133.

    PubMed  CAS  Google Scholar 

  • Roomi, M. W., Ishaque, A., Kahn, N. R., and Eylar, E. H., 1978a, Glycoproteins and albumin in peripheral nerve myelin, J. Neurochem. 31: 375–380.

    Article  PubMed  CAS  Google Scholar 

  • Roomi, M. W., Ishaque, A., Khan, N. R., and Eylar, E. H., 1978b, The Po protein: The major glycoprotein of peripheral nerve myelin, Biochim. Biophys. Acta 536: 112–121.

    PubMed  CAS  Google Scholar 

  • Rostas, J. A. P., Kelly, P. T., Pesin, R. H., and Cotman, C. W., 1979, Protein and glycoprotein composition of synaptic junctions prepared from discrete synaptic regions and different species, Brain Res. 168: 151–167.

    Article  PubMed  CAS  Google Scholar 

  • Rutishauser, U., Thiery, J.-P., Brackenbury, R., Sela, B.-A., and Edelman, G. M., 1976, Mechanisms of adhesion among cells from neural tissues of the chick embryo, Proc. Natl. Acad. Sci. USA 73: 577–581.

    Article  PubMed  CAS  Google Scholar 

  • Rutishauser, U., Gall, W., and Edelman, G. M., 1978, Adhesion among neural cells of the chick embryo. IV. Role of the cell surface molecule CAM in the formation of neurite bundles in cultures of spinal ganglia, J. Cell Biol. 79: 382–393.

    Article  PubMed  CAS  Google Scholar 

  • Rutishauser, U., Hoffman, S., and Edelman, G. M., 1982, Binding properties of a cell adhesion molecule from neural tissue, Proc. Natl. Acad. Sci. USA 79: 685–689.

    Article  PubMed  CAS  Google Scholar 

  • Saitoh, T., Oswald, R., Wennogle, L. P., and Changeux, J.-P., 1980, Conditions for the selective labeling of the acetylcholine receptor by the covalent non-competitive blocker 5-azido-[3H]trimethisoquin, FEBS Lett. 116: 30–36.

    Article  PubMed  CAS  Google Scholar 

  • Salvaterra, P. M., Gurd, J. M., and Mahler, H. R., 1977, Interactions of the nicotinic acetylcholine receptor from rat brain with lectins, J. Neurochem. 29: 345–348.

    Article  PubMed  CAS  Google Scholar 

  • Sato, S., Quarles, R. H., and Brady, R. O., 1982, Susceptibility of the myelin-associated glycoprotein and basic protein to a neutral protease in highly purified myelin from human and rat brain, J. Neurochem. 39: 97–105.

    Article  PubMed  CAS  Google Scholar 

  • Schiebler, W., and Hucho, F., 1978, Membranes rich in acetylcholine receptor: Characterization and reconstitution to excitable membranes from exogenous lipids, Eur. J. Biochem. 85: 55–63.

    Article  PubMed  CAS  Google Scholar 

  • Schlessinger, J., Elson, E. L., Webb, W. W., Yahara, I., Rutishauser, U., and Edelman, G. M., 1977, Receptor diffusion on cell surfaces modulated by locally bound concanavalin A, Proc. Natl. Acad. Sci. USA 74: 1110–1114.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt, J., and Raftery, M. A., 1972, Use of affinity chromatography of acetylcholine receptor purification, Biochem. Biophys. Res. Commun 49: 572–578.

    Article  PubMed  CAS  Google Scholar 

  • Sea, C. P., and Peterson, R. G., 1975, Ultrastructure and biochemistry of myelin after isoniazid-induced nerve degeneration in rats, Exp. Neurol. 48: 252–260.

    Article  PubMed  CAS  Google Scholar 

  • Simpson, D. L., Thorne, D. R., and Loh, H. H., 1976, Sulfated glycoproteins, glycolipids and glycosaminoglycans from synaptic plasma and myelin membranes: Isolation and characterization of sulfated glycopeptides, Biochemistry 15: 5449–5457.

    Article  PubMed  CAS  Google Scholar 

  • Simpson, D. L., Thorne, D. R., and Loh, H. H., 1977, Developmentally regulated lectin in neonatal rat brain, Nature (London) 266: 367–369.

    Article  CAS  Google Scholar 

  • Simpson, D. L., Thorne, D. R., and Loh, H. H., 1978, Lectins: Endogenous carbohydrate-binding proteins from vertebrate tissues: Functional roles in recognition processes, Life Sci. 22: 727–748.

    Article  PubMed  CAS  Google Scholar 

  • Singh, H., Silberlicht, I., and Sinch, J., 1978, A comparative study of the polypeptides of mammalian peripheral nerve myelin, Brain Res. 144: 303–311.

    Article  PubMed  CAS  Google Scholar 

  • Slater, E. P., Zaremba, S., and Hogue-Angeletti, R. A., 1981, Purification of membrane-bound dopamine ß-monooxygenase from chromaffin granules: Relation to soluble dopamine (3-monooxygenase, Arch. Biochem. Biophys. 211: 288–296.

    Article  PubMed  CAS  Google Scholar 

  • Spencer, P. S., 1979, Neuronal regulation of myelinating cell function, (Soc. Neurosci. Symp. 4: 275–321.

    Google Scholar 

  • Sperry, R. W., 1963, Chemoaffinity in the orderly growth of nerve fiber patterns and connections, Proc. Natl. Acad. Sci. USA 50: 703–707.

    Article  PubMed  CAS  Google Scholar 

  • Stefanovic, V., Mandel, P., and Rosenberg, A., 1975, Activation of acetyl-and butyrylcholinesterase by enzymatic removal of sialic acid from intact neuroblastoma and astroblastoma cells in culture, Biochemistry 14: 5257–5260.

    Article  PubMed  CAS  Google Scholar 

  • Sternberger, N. H., Quarles, R. H., Itoyama, Y., and Webster, H. D., 1979, Myelin-associated glycoprotein demonstrated immunocytochemically in myelin and myelin-forming cells of developing rat, Proc. Natl. Acad. Sci. USA 76: 1510–1514.

    Article  PubMed  CAS  Google Scholar 

  • Stromer, M. H., and Goll, D. E., 1972, Studies on purified alpha-actinin. II. Electron microscopic studies on the competitive binding of alpha-actinin and tropomyosin to Z-line extracted myofibrils, J. Mol. Biol. 67: 489–494.

    Article  PubMed  CAS  Google Scholar 

  • Thiery, J.-P., Brackenbury, R., Rutishauser, U., and Edelman, G. M., 1977, Adhesion among neural cells of the chick embryo. II. Purification and characterization of a cell adhesion molecule from neural retina, J. Biol. Chem. 252: 6841–6845.

    PubMed  CAS  Google Scholar 

  • Trapp, B. D., Itoyama, Y., Sternberger, N. H., Quarles, R. H., and Webster, H. F., 1981, Immunocytochemical localization of Po protein in Golgi complex membranes and myelin of developing rat Schwann cells, J. Cell Biol. 90: 1–6.

    Article  PubMed  CAS  Google Scholar 

  • Tzartos, S. J., and Lindstrom, J. M., 1980, Monoclonal antibodies used to probe acetylcholine receptor structure: Localization of the main immunogenic region and detection of similarities between subunits, Proc. Natl. Acad. Sci. USA 77: 755–759.

    Article  PubMed  CAS  Google Scholar 

  • Tzartos, S. J., Rand, D. E., Einarson, B. L., and Lindstrom, J. M., 1981, Mapping of surface structures of Electrophorus acetylcholine receptor using monoclonal antibodies, J. Biol. Chem. 256: 8635–8645.

    PubMed  CAS  Google Scholar 

  • Van der Loos, H., 1963, The fine structure of synapses in the cerebral cortex, Z. Zellforsch. Mikrosk. Anat. 60: 815–824.

    Article  Google Scholar 

  • Vandlen, R., Wu, W. C.-S., Eisenach, J. C., and Raftery, M. A., 1979, Studies of the composition of purified Torpedo cahfornica acetylcholine receptor and of its subunits, Biochemistry 18: 1845–1854.

    Article  PubMed  CAS  Google Scholar 

  • Van Heyningen, S., 1974, Cholera toxin: Interaction of its subunits with ganglioside GM,, Science 183: 656–657.

    Article  Google Scholar 

  • Vincendon, G., Gombos, G., and Morgan, I. G., 1973, The interest of studying glycoproteins in the central nervous system, in: Methodologie de la Structure et du Metabolisme des Glycoconjugates (Glycoproteins et Glycolipids), Vol. 2, CNRS, Paris.

    Google Scholar 

  • von Wedel, R. J., Carlson, S. S., and Kelly, R. B., 1981, Transfer of synaptic vesicle antigens to the presynaptic plasma membrane during exocytosis, Proc. Natl. Acad. Sci. USA 78: 1014–1018.

    Article  Google Scholar 

  • Waehneldt, T. V., Matthieu, J.-M., and Neuhoff, V., 1977, Characterization of a myelin related fraction (SN 4) isolated from rat forebrain at two developmental stages, Brain Res. 138: 29–43.

    Article  PubMed  CAS  Google Scholar 

  • Weinberg, C. B., Sanes, J. R., and Hall, Z. W., 1981, Formation of neuromuscular junctions in adult rats: Accumulation of acetylcholine receptors, acetylcholinesterase, and components of synaptic basal lamina, Deg. Biol. 84: 255–266.

    Article  CAS  Google Scholar 

  • Weiss, P., 1947, The problem of specificity in growth and development, Yale J. Biol. Med., 19: 235–259.

    PubMed  CAS  Google Scholar 

  • Wenthold, R. J., Mahler, H. R., and Moore, W. J., 1974, Properties of rat brain acetyl-cholinesterase, J. Neurochem. 22: 945–949.

    Article  CAS  Google Scholar 

  • Wiggins, R. C., Benjamin, J. A., and Morell, P., 1975, Appearance of myelin proteins in rat sciatic nerve during development, Brain Res. 89: 99–106.

    Article  PubMed  CAS  Google Scholar 

  • Winkler, H., and Westhead, E., 1980, The molecular organization of adrenal chromaffin granules, Neuroscience 5: 1803–1823.

    Article  PubMed  CAS  Google Scholar 

  • Wood, J. G., and Dawson, R. M. C., 1973, A major myelin glycoprotein of sciatic nerve, J. Neurochem. 21: 717–719.

    Article  PubMed  CAS  Google Scholar 

  • Wood, J. G., and Dawson, R. M. C., 1974a, Some properties of a major structural glycoprotein of sciatic nerve, J. Neurochem. 22: 627–630.

    Article  PubMed  CAS  Google Scholar 

  • Wood, J. G., and Dawson, R. M. C., 1974b, Lipid and protein changes in sciatic nerve during Wallerian degeneration, J. Neurochem. 22: 631–635.

    Article  PubMed  CAS  Google Scholar 

  • Wood, J. G., and Engel, E. L., 1976, Peripheral myelin glycoproteins and myelin fine structure during development of rat sciatic nerve, J. Neurocytol. 5: 605–615.

    Article  PubMed  CAS  Google Scholar 

  • Wood, J. G., and McLaughlin, B. J., 1975, The visualization of concanavalin-A binding sites in the intraperiod line of rat sciatic nerve myelin, J. Neurochem. 24: 233–235.

    Article  PubMed  CAS  Google Scholar 

  • Zanetta, J. P., Sarlieve, L. L., Mandel, P., Vincendon, G., and Gombos, G., 1977, Fractionation of glycoproteins associate to adult rat brain myelin fractions, J. Neurochem. 29: 827.

    Article  PubMed  CAS  Google Scholar 

  • Zanetta, J. P., Reeber, A., and Vincendon, G., 1981, Glycoproteins from adult rat brain synaptic vesicles: Fractionation on four immobilized lectins, Biochim. Biophys. Acta 670: 393–400.

    PubMed  CAS  Google Scholar 

  • Zanini, A., Giannattasio, G., Nussdorfer, G., Margolis, R. K., Margolis, R. U., and Meldolesi, J., 1980, Molecular organization of prolactin granules. II. Characterization of glycosaminoglycans and glycoproteins of the bovine prolactin matrix, J. Cell Biol. 86: 260–272.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Plenum Press, New York

About this chapter

Cite this chapter

Kelly, P.T. (1984). Nervous System Glycoproteins. In: Ivatt, R.J. (eds) The Biology of Glycoproteins. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-7464-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-7464-0_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-7466-4

  • Online ISBN: 978-1-4684-7464-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics