Skip to main content

The Metabolism and Utilization of Carbohydrates by Suspension Cultures of Plant Cells

  • Chapter
Carbohydrate Metabolism in Cultured Cells

Abstract

The subject of carbohydrate metabolism of plant cell cultures may be approached from two principal directions. The first concerns the use of cell cultures to study the physiology and biochemistry of carbohydrate metabolism in plants but at the level of the cell. The second relates to the utilization of carbohydrates as a primary carbon source and their influence upon biomass and secondary metabolite productivity in cell cultures. Such a division is of course arbitrary and superficial, the two areas often being inextricably linked together. The literature relating to carbohydrate metabolism in plant cell cultures is both disperse and, in many areas, sparse. For this reason and to examine the subject in a structured fashion, we have chosen to discuss the available data through a series of linked topics. Such an approach also has the advantage of highlighting key areas where little information is available alongside those for which a substantial body of information already exists. The topics covered concern the nature and efficiency of various carbon sources tested for their ability to support growth, the mode of utilization and fate of different carbon sources, and the effects of different carbon sources on biomass accumulation and secondary metabolite synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amorim, H. V., Dougall, D. K., and Sharp, W. R., 1977, The effect of carbohydrate and nitrogen concentration on phenol synthesis in Paul’s Scarlet rose cells grown in tissue culture, Physiol. Plant. 39: 91.

    CAS  Google Scholar 

  • Angelova, A. A., Atanasov, A. I., Stambolova, M. A., and Nikolov, T. K., 1974, Invertase activity and sugar content in cultures of sugar beet tissue cultivated on a medium containing chloramphenicol, Fiziol. Rast. 21: 1021.

    CAS  Google Scholar 

  • Asamizu, T., and Nishi, A., 1979, Biosynthesis of cell-wall polysaccharides in cultured carrot cells, Planta 146: 49.

    CAS  Google Scholar 

  • Asamizu, T., and Nishi, A., 1980, Regenerated cell wall of carrot protoplasts isolated from suspension-cultured cells, Physiol. Plant. 48: 207.

    CAS  Google Scholar 

  • Ball, E., 1953, Hydrolysis of sucrose by autoclaving media: A neglected aspect in the tissue culture of plant tissues, Bull. Torrey Bot. Club 80: 409.

    CAS  Google Scholar 

  • Becker, G. E., Hui, P. A., and Albersheim, P., 1964, Synthesis of extracellular polysaccharide by suspensions of Acer pseudoplatanus cells, Plant Physiol. 39: 913.

    PubMed  CAS  Google Scholar 

  • Bertola, M. A., and Klis, F. M., 1979, Continuous cultivation of glucose-limited bean cells (Phaseolus vulgaris L.) in a modified bacterial fermentor, J. Exp. Bot. 30: 1223.

    CAS  Google Scholar 

  • Bohm, H., 1978, Regulation of alkaloid production in plant cell cultures, in: Frontiers of Plant Tissue Culture 1978 ( T. A. Thorpe, ed.), pp. 201–211, University of Calgary, Calgary.

    Google Scholar 

  • Bowen, J. E., 1972, Sugar transport in immature internodal tissue of sugarcane, Plant Physiol. 49: 82.

    PubMed  CAS  Google Scholar 

  • Butcher, D. N., 1977, Secondary production in tissue cultures, in: Applied and Fundamental Aspects of Plant Cell, Tissue and Organ Culture ( J. Reinert and Y. P. S. Bajaj, eds.), pp. 668–693, Springer-Verlag, Berlin.

    Google Scholar 

  • Butenko, R. G., Kholodova, V. P., and Urmantseva, V. V., 1972, Regularities of growth and certain correlations between growth and sugar content in cells of sugar beet tissue cultures, Soy. Plant Physiol. 19: 786.

    Google Scholar 

  • Carceller, M., Davey, M. R., Fowler, M. W., and Street, H. E., 1971, The influence of sucrose, 2,4-D and kinetin on the growth, fine structure and lignin content of cultured sycamore cells, Protoplasma 73: 367.

    PubMed  CAS  Google Scholar 

  • Chaubet, N., and Pareilleux, A., 1982, Characterization of 3-galactosidases of Medicago sativa suspension-cultured cells growing on lactose: Effect of the growth substrates on the activities, Z. Pflanzenphysiol. 106: 401.

    CAS  Google Scholar 

  • Chaubet, N., Petiard, V., and Pareilleux, A., 1981, (3-Galactosidases of suspension-cultured Medicago sativa cells growing on lactose, Plant Sci. Lett. 22: 369.

    CAS  Google Scholar 

  • Chin, C. K., and Weston, C. D., 1975, Sucrose absorption and synthesis by excised Lycopersicon esculentum roots, Phytochemistry 14: 69.

    CAS  Google Scholar 

  • Chin, C. K., Haas, J. C., and Still, C. C., 1981, Growth and sugar uptake of excised root and callus of tomato, Plant Sci. Lett. 21: 229.

    CAS  Google Scholar 

  • Chong, C., and Taper, C. D., 1972, Malus tissue cultures. I. Sorbitol (D-glucitol) as a carbon source for callus initiation and growth, Can. J. Bot. 50: 1399.

    CAS  Google Scholar 

  • Chong, C., and Taper, C. D., 1974, Malus tissue cultures. II. Sorbitol metabolism and carbon nutrition, Can. J. Bot. 52: 236.

    Google Scholar 

  • Chu, L. J. C., and Shannon, J. C., 1975, In vitro cultures of maize endosperm: A model system for studying in vivo starch biosynthesis, Crop Sci. 15: 814.

    CAS  Google Scholar 

  • Constabel, F., 1968, Gerbostoffproduktion der calluskulturen von Juniperus communis L., Planta 79: 58.

    CAS  Google Scholar 

  • Copping, L. G., and Street, H. E., 1972, Properties of the invertases of cultured sycamore cells and changes in their activity during culture growth, Physiol. Plant. 26: 346.

    CAS  Google Scholar 

  • Danks, M. L., Fletcher, J. S., and Rice, E. L., 1975, Effects of phenolic inhibitors on growth and metabolism of glucose-UL-14C in Paul’s Scarlet rose cell suspension cultures, Am. J. Bot. 62: 311.

    CAS  Google Scholar 

  • Davies, M. E., 1972, Polyphenol synthesis in cell suspension cultures of Paul’s Scarlet rose, Planta 104: 50.

    CAS  Google Scholar 

  • Dougall, D. K., 1980, Nutrition and metabolism, in: Plant Tissue Culture as a Source of Biochemicals ( E. J. Staba, ed.), pp. 21–58, CRC Press, Boca Raton, Fla.

    Google Scholar 

  • Dougall, D. K., and Weyrauch, K. W., 1980, Growth and anthocyanin production by carrot suspension cultures grown under chemostat conditions with phosphate as the limiting nutrient, Biotechnol. Bioeng. 22: 337.

    CAS  Google Scholar 

  • Edelman, J., and Hanson, A. D., 1971a, Sucrose suppression of chlorophyll synthesis in carrot callus cultures, Planta 98: 150.

    CAS  Google Scholar 

  • Edelman, J., and Hanson, A. D., 1971b, Sucrose suppression of chlorophyll synthesis in carrot tissue culture: The role of invertase, Planta 101: 122.

    CAS  Google Scholar 

  • Ehward, R., Mescheryakov, A. B., and Kholodova, V. P., 1979, Hexose uptake by storage parenchyma of potato and sugar beet at different concentrations and different thicknesses of tissue slices, Plant Sci. Lett. 16: 181.

    Google Scholar 

  • Engel, O. S., and Kholodova, V. P., 1969, Activity of invertase and accumulation of sucrose in sugar beet roots, Sov. Plant Physiol. 16: 973.

    CAS  Google Scholar 

  • Eriksson, T., 1965, Studies on the growth requirements and growth measurements of cell cultures of Haplopappus gracilis, Physiol. Plant. 18: 976.

    CAS  Google Scholar 

  • Fowler, M. W., 1971, Studies on the growth in culture of plant cells. XIV. Carbohydrate oxidation during the growth of Acer pseudoplatanus L. cells in suspension culture, J. Exp. Bot. 22: 715.

    CAS  Google Scholar 

  • Fowler, M. W., 1977, Growth of cell cultures under chemostat conditions, in: Plant Tissue Culture and Its Biotechnological Application (W. Barz, E. Reinhard, and M. H. Zenk, eds.), pp. 253–263, Springer-Verlag, Berlin.

    Google Scholar 

  • Fowler, M. W., 1978, Regulation of carbohydrate metabolism in cell suspension cultures, in: Frontiers of Plant Tissue Culture 1978 ( T. A. Thorpe, ed.), pp. 443–452, University of Calgary, Calgary.

    Google Scholar 

  • Fowler, M. W., 1982, Substrate utilization by plant cell cultures, J. Chem. Tech. Biotechnol. 32: 338.

    CAS  Google Scholar 

  • Fowler, M. W., and Clifton, A., 1974, Activities of enzymes of carbohydrate metabolism in cells of Acer pseudoplatanus L. maintained in continuous (chemostat) culture, Eur. J. Biochem. 45: 445.

    CAS  Google Scholar 

  • Fowler, M. W., and Clifton, A., 1975, Hexokinase activity in cultured sycamore cells, New Phytol. 75: 533.

    CAS  Google Scholar 

  • Fowler, M. W., and Stepan-Sarkissian, G., 1983, Chemicals from plant cell fermentation, in: Advances in Biotechnological Processes ( A. Mizrahi and A. L. van Wezel, eds.), Vol. 2, pp. 135–158, Liss, New York.

    Google Scholar 

  • Fowler, M. W., Watson, R., and Lyons, I., 1982, Substrate utilization, carbon and nitrogen, by suspension cultured plant cells, in: Plant Tissue Culture 1982 (A. Fujiwara, ed.), pp. 225–228, Japanese Association for Plant Tissue Culture, Tokyo.

    Google Scholar 

  • Gamanetz, L. V., and Gamburg, K. Z., 1981, The effect of adenine on growth, starch and ADPG content and ADPG pyrophosphorylase activity in suspension-cultured tobacco cells, Z. Pflanzenphysiol. 104: 61.

    Google Scholar 

  • Gamborg, O. L., 1966, Aromatic metabolism in plants. II. Enzymes of the shikimate pathway in suspension cultures of plant cells, Can. J. Biochem. 44: 791.

    PubMed  CAS  Google Scholar 

  • Gautheret, R. J., 1955, The nutrition of plant tissue cultures, Annu. Rev. Plant Physiol. 6: 433.

    CAS  Google Scholar 

  • Giaquinta, R., 1977, Sucrose hydrolysis in relation to phloem translocation in Beta vulgaris, Plant Physiol. 60: 339.

    PubMed  CAS  Google Scholar 

  • Givan, C. V., and Collin, H. A., 1967, Studies in the growth in culture of plant cells. II. Changes in respiration rate and nitrogen content associated with the growth of Acer pseudoplatanus L. cells in suspension culture, J. Exp. Bot. 18: 321.

    Google Scholar 

  • Gordon, P. A., and Stewart, P. R., 1969, Ubiquinone formation in wild-type and petite yeast: The effect of catabolite repression, Biochim. Biophys. Acta 127: 358.

    Google Scholar 

  • Goris, A., 1948, Epuisement des réserves glucidiques de fragments de tubercules de Topinambour cultivés in vitro sur milieux depourvus de sucres: Influence de l’acide indol-3-acétique, C. R. Acad. Sci. 226: 742.

    CAS  Google Scholar 

  • Grout, B. W. W., Chan, K. W., and Simpkins, I., 1976, Aspects of growth and metabolism in a suspension culture of Acer pseudoplatanus (L.) grown on a glycerol carbon source, J. Exp. Bot. 27: 77.

    CAS  Google Scholar 

  • Hagimori, M., Matsumoto, T., and Obi, Y., 1982, Studies on the production of Digitalis cardenolides by plant tissue culture. III. Effects of nutrients on digitoxin formation by shoot-forming cultures of Digitalis purpurea L. grown in liquid media, Plant Cell Physiol. 23: 1205.

    CAS  Google Scholar 

  • Hart, J. W., and Filner, P., 1969, Regulation of sulfate uptake by amino acids in cultured tobacco cells, Plant Physiol. 44: 1253.

    PubMed  CAS  Google Scholar 

  • Hughes, R., and Street, H. E., 1974, Galactose as an inhibitor of expansion of root cells, Ann. Bot. 38: 555.

    CAS  Google Scholar 

  • Ikeda, T., Matsumoto, T., and Noguchi, M., 1976, Effects of nutritional factors on the formation of ubiquinone by tobacco plant cells in suspension culture, Agric. Biol. Chem. 40: 1765.

    CAS  Google Scholar 

  • Jenner, C. F., 1974, An investigation of the association between the hydrolysis of sucrose and its absorption by grains of wheat, Aust. J. Plant Physiol. 1: 319.

    CAS  Google Scholar 

  • Jessup, W., and Fowler, M. W., 1977, Interrelationship between carbohydrate metabolism and nitrogen assimilation in cultured plant cells. III. Effect of the nitrogen source on the pattern of carbohydrate oxidation in cells of Acer pseudoplatanus L. grown in culture, Planta 137: 71.

    CAS  Google Scholar 

  • Jones, A., and Veliky, I. A., 1980, Growth of plant cell suspension culture on glycerol as sole source of carbon and energy, Can. J. Bot. 58: 648.

    CAS  Google Scholar 

  • Kikuta, Y., Harada, T., Akemine, T., and Tagawa, T., 1977, Role of kinetin in activity of the pentose phosphate pathway in relation to growth of potato tissue cultures, Plant Cell Physiol. 18: 361.

    CAS  Google Scholar 

  • Kikuta, Y., Masuda, K., and Okazawa, Y., 1981, Embryogenesis and glucose metabolism in carrot cell suspension cultured in vitro, J. Fac. Agric. Hokkaido Univ. 60: 250.

    CAS  Google Scholar 

  • King, P. J., 1976, Studies on the growth in culture of plant cells. XX. Utilization of 2,4-dichlorophenoxyacetic acid by steady-state cell cultures of Acer pseudoplatanus L., J. Exp. Bot. 27: 1053.

    CAS  Google Scholar 

  • King, P. J., 1977, Growth limitation by nitrate and glucose in chemostat cultures of Acer pseudoplatanus L., J. Exp. Bot. 28: 142.

    CAS  Google Scholar 

  • King, P. J., and Street, H. E., 1973, Growth patterns in cell culture, in: Plant Tissue and Cell Culture ( H. E. Street, ed.), pp. 269–337, Blackwell, Oxford.

    Google Scholar 

  • King, P. J., Mansfield, K. J., and Street, H. E., 1973, Control of growth and cell division in plant cell suspension cultures, Can. J. Bot. 51: 1807.

    Google Scholar 

  • Klenovska, S., 1973, Water relations and the dynamics of the sugar content in tobacco callus tissue cultures when using polyethyleneglycol as osmotic agent, Acta Fac. Rerum Nat. Univ. Comenianae Physiol. Plant 7: 19–29.

    CAS  Google Scholar 

  • Komamine, A., and Shimizu, T., 1975, Changes in some enzyme activities and respiration in the early stage of callus formation in a carrot root tissue culture, Physiol. Plant. 33: 47.

    CAS  Google Scholar 

  • Lamport, D. T. A., 1963, Oxygen fixation into hydroxyproline of plant cell wall protein, J. Biol. Chem. 238: 1438.

    PubMed  CAS  Google Scholar 

  • Limberg, M., Cress, D., and Lark, K. G., 1979, Variants of soybean cells which can grow in suspension with maltose as a carbon energy source, Plant Physiol. 63: 718.

    PubMed  CAS  Google Scholar 

  • Maretzki, A., and Thom, M., 1972, Membrane transport of sugars in cell suspension of sugarcane. I. Evidence for sites and specificity, Plant Physiol. 49: 177.

    PubMed  CAS  Google Scholar 

  • Maretzki, A., and Thom, M., 1978, Characteristics of a galactose-adapted sugarcane cell line grown in suspension culture, Plant Physiol. 61: 544.

    PubMed  CAS  Google Scholar 

  • Maretzki, A., and Thom, M., 1979, Glucose transport in Saccharum sp. cell suspensions, Plant Physiol. 63 (Suppl.): 148.

    Google Scholar 

  • Maretzki, A., de la Cruz, A., and Nickell, L. G., 1971, Extracellular hydrolysis of starch in sugarcane cell suspensions, Plant Physiol. 48: 521.

    CAS  Google Scholar 

  • Maretzki, A., Thom, M., and Nickell, L. G., 1974, Utilization and metabolism of carbohydrates in cell and callus cultures, in: Tissue Culture and Plant Science 1974 (H. E. Street, ed.), pp. 329361, Academic Press, New York.

    Google Scholar 

  • Mathes, M. C., Morselli, M., and Marvin, J. W., 1973, Uses of various carbon sources by isolated maple callus cultures, Plant Cell Physiol. 14: 797.

    CAS  Google Scholar 

  • Matsumoto, T., Nishida, K., Noguchi, M., and Tamaki, E., 1973, Some factors affecting the anthocyanin formation by Populus cells in suspension cultures, Agric. Biol. Chem. 37: 561.

    CAS  Google Scholar 

  • Misawa, M., 1977, Production of natural substances by plant cell cultures described in Japanese patents, in: Plant Tissue Culture and Its Biotechnological Application ( W. Barz, E. Reinhard, and M. H. Zenk, eds.), pp. 17–26, Springer-Verlag, Berlin.

    Google Scholar 

  • Nevins, D. J., English, P. D., and Albersheim, P., 1966, The specific nature of plant cell-wall polysaccharides, Plant Physiol. 42: 900.

    Google Scholar 

  • Nickell, L. G., and Maretzki, A., 1970, The utilization of sugars and starch as carbon sources by sugarcane cell suspension cultures, Plant Cell Physiol. 11: 183.

    CAS  Google Scholar 

  • Okamura, S., Sueki, K., and Nishi, A., 1975, Physiological changes of carrot cells in suspension culture during growth and senescence, Physiol. Plant 33: 251.

    CAS  Google Scholar 

  • Opekarova, M., and Kotyk, A., 1973, Uptake of sugars by tobacco callus tissue, Biol. Plant. 15: 312.

    CAS  Google Scholar 

  • Pareilleux, A., and Chaubet, N., 1980, Growth kinetics of apple plant cell cultures, Biotechnol. Lett. 2: 291.

    Google Scholar 

  • Parr, D. R., and Edelman, J., 1975, Release of hydrolytic enzymes from the cell walls of intact and disrupted carrot cell tissue, Planta 127: 111.

    CAS  Google Scholar 

  • Parr, D., and Edelman, J., 1976, Passage of sugars across the plasmalemma of carrot callus cells, Phytochemistry 15: 619.

    CAS  Google Scholar 

  • Rose, D., Martin, S. M., and Clay, P. P. F., 1972, Metabolic rates for major nutrients in suspension cultures of plant cells, Can. J. Bot. 50: 1301.

    CAS  Google Scholar 

  • Rubery, P. H., and Northcote, D. H., 1970, The effect of auxin (2,4-dichlorophenoxyacetic acid) on the synthesis of cell wall polysaccharides in cultured sycamore cells, Biochim. Biophys. Acta 222: 95.

    PubMed  CAS  Google Scholar 

  • Sabinski, F., Barckhaus, R. H., Fromme, H. G., and Spener, F., 1982, Dynamics of galactolipids and plastids in non-photosynthetic cells of Glycine max suspension cultures: A morphological and biochemical study, Plant Physiol. 70: 610.

    PubMed  CAS  Google Scholar 

  • Sacher, J. A., 1966, The regulation of sugar uptake and accumulation in bean pod tissue, Plant Physiol. 41: 181.

    PubMed  CAS  Google Scholar 

  • Sacher, J. A., Hatch, M., and Glasziou, K. T., 1963, Sugar accumulation cycle in sugarcane. III. Physical and metabolic aspects of cycle in immature storage tissue, Plant Physiol. 38: 348.

    PubMed  CAS  Google Scholar 

  • Sahai, O. P., and Shuler, M. L., 1984, Environmental parameters influencing phenolics production by batch cultures of Nicotiana tabacum, Biotechnol. Bioeng. 26: 111.

    PubMed  CAS  Google Scholar 

  • Sato, F., and Yamada, Y., 1984, High berberine-producing cultures of Coptis japonica cells, Phytochemistry 23: 281.

    CAS  Google Scholar 

  • Shantz, E. M., Sugii, M., and Steward, F. C., 1967, The interaction of cell division factors with myo-inositol and their effect on cultured carrot tissue, Ann. N.Y. Acad. Sci. 144: 335.

    CAS  Google Scholar 

  • Shuler, M. L., 1981, Production of secondary metabolites from plant tissue culture—Problems and prospects, Ann. N.Y. Acad. Sci. 369: 65.

    CAS  Google Scholar 

  • Simpkins, I., and Street, H. E., 1970, Studies on the growth in culture of plant cells. VII. Effects of kinetin on the carbohydrate and nitrogen metabolism of Acer pseudoplatanus L. cells grown in suspension culture, J. Exp. Bot. 21: 170.

    CAS  Google Scholar 

  • Simpkins, I., Collin, H. A., and Street, H. E., 1970, The growth of Acer pseudoplatanus cells in a synthetic liquid medium: Response to the carbohydrate, nitrogenous and growth hormone constituents, Physiol. Plant. 23: 385.

    CAS  Google Scholar 

  • Smith, M. M., and Stone, B. A., 1973, Studies on Lolium multiflorum endosperm in tissue culture. I. Nutrition, Aust. J. Biol. Sci. 26: 123.

    CAS  Google Scholar 

  • Staba, E. J., 1977, Tissue culture and pharmacy, in: Applied and Fundamental Aspects of Plant Cell, Tissue and Organ Culture (J. Reinert and Y. P. S. Bajaj, eds.), pp. 694–707, Springer-Verlag, Berlin.

    Google Scholar 

  • Staba, E. J., 1980, Secondary metabolism and biotransformation, in: Plant Tissue Culture as a Source of Biochemicals ( E. J. Staba, ed.), pp. 59–97, CRC Press, Boca Raton, Fla.

    Google Scholar 

  • Stafford, A., and Fowler, M. W., 1983, Effect of carbon and nitrogen growth limitation upon nutrient uptake and metabolism in batch cultures of Catharanthus roseus (L) G. Don., Plant Cell Tissue Organ Cult. 2: 239.

    CAS  Google Scholar 

  • Straus, J., 1962, Invertase in cell walls of plant tissue cultures, Plant Physiol. 37: 342.

    PubMed  CAS  Google Scholar 

  • Straus, J., and Campbell, W. A., 1963, Release of enzymes by plant tissue cultures, Life Sci. 2: 50.

    CAS  Google Scholar 

  • Street, H. E. (ed.), 1974, Tissue Culture and Plant Science 1974, Academic Press, New York.

    Google Scholar 

  • Street, H. E., 1977, Applications of cell suspension cultures, in: Applied and Fundamental Aspects of Plant Cell, Tissue and Organ Culture ( J. Reinert and Y. P. S. Bajaj, eds.), pp. 649–677, Springer-Verlag, Berlin.

    Google Scholar 

  • Street, H. E., Collin, H. A., Short, K., and Simpkins, I., 1968, Hormonal control of cell division and expansion in suspension cultures of Acer pseudoplatanus L.: The action of kinetin, in: Biochemistry and Physiology of Plant Growth Substances ( F. Wightman and G. Setterfield, eds.), pp. 489–504, Runge Press, Ottawa.

    Google Scholar 

  • Tabata, M., 1977, Recent advances in the production of medicinal substances by plant cell cultures, in: Plant Tissue Culture and Its Biotechnological Application ( W. Barz, E. Reinhard, and M. H. Zenk, eds.), pp. 3–16, Springer-Verlag, Berlin.

    Google Scholar 

  • Talmadge, K. W., Keegstra, K., Bauer, W. D., and Albersheim, P., 1973, The structure of plant cell walls. I. The macromolecular components of the walls of suspension-cultured sycamore cells with a detailed analysis of the pectic polysaccharides, Plant Physiol. 51: 158.

    PubMed  CAS  Google Scholar 

  • Tandon, P., and Arya, H. C., 1979, Effect of growth regulators on carbohydrate metabolism of Zizyphus jujuba gall and normal stem tissues in culture, Biochem. Physiol. Pflanz. 174: 772.

    CAS  Google Scholar 

  • Tarakanova, G. A., Gudskov, N. L., and Vinnikova, N. V., 1979, Certain characteristics of the primary metabolism and accumulation of diosgenin in culture of Dioscorea deltoidea cells, Fiziol. Rast. 26: 54.

    CAS  Google Scholar 

  • Thorpe, T. A., and Meier, D., 1972, Starch metabolism, respiration and shoot formation in tobacco callus culture, Physiol. Plant. 27: 365.

    CAS  Google Scholar 

  • Thorpe, T. A., and Meier, D., 1974, Enzymes of starch metabolism in Nicotiana tabacum callus, Phytochemistry 13: 1329.

    CAS  Google Scholar 

  • Ueda, Y., Ishiyama, M., Fukui, M., and Nishi, A., 1974, Invertase in cultured Daucus carota cells, Phytochemistry 13: 383.

    CAS  Google Scholar 

  • Verma, D. C., and Dougall, D. K., 1977, Influence of carbohydrates on quantitative aspects of growth and embryo formation in wild carrot suspension cultures, Plant Physiol. 59: 81.

    PubMed  CAS  Google Scholar 

  • Verma, D. C., and Dougall, D. K., 1979, Myo-inositol biosynthesis and galactose utilization by wild carrot (Daucus carota L. var. carota) suspension cultures, Ann. Bot. 43: 259.

    CAS  Google Scholar 

  • Voliva, C., Moessen, G. W., and Matthysse, A. G., 1982, Starch-enhanced synthesis and release of amylolytic enzymes from normal and crown gall tumor tobacco tissue culture cells, Can. J. Bot. 60: 1474.

    CAS  Google Scholar 

  • Wilson, G., 1980, Continuous culture of plant cells using the chemostat principle, Adv. Biochem. Eng. 16: 1.

    Google Scholar 

  • Wilson, S. B., 1971, Studies of the growth in culture of plant cells. XIII. Properties of mitochondria isolated from batch cultures of Acer pseudoplatanus cells, J. Exp. Bot. 22: 725.

    CAS  Google Scholar 

  • Wyse, R., 1979, Sucrose uptake by sugar beet tap root tissue, Plant Physiol. 64: 837.

    PubMed  CAS  Google Scholar 

  • Yamada, Y., Sato, F., and Watanbe, K., 1982, Photosynthetic carbon metabolism in cultured photoautotrophic cells, in: Plant Tissue Culture 1982 ( A. Fujiwara, ed.), pp. 249–250, Japanese Association for Plant Tissue Culture, Tokyo.

    Google Scholar 

  • Yamakawa, T., Kato, S., Ishida, K., Kodama, T., and Minoda, Y., 1983, Production of anthocyanins by Vitis cells in suspension culture, Agric. Biol. Chem. 47: 2185.

    CAS  Google Scholar 

  • Yeoman, M. M., Miedzybrodzka, M. B., Lindsey, K., and McLauchlan, W. R., 1980, The synthet-is potential of cultured plant cells, in: Plant Cell Cultures: Results and Perspectives ( F. Sala, B. Parisi, R. Cella, and O. Ciferri, eds.), pp. 327–343, Elsevier/North-Holland, Amsterdam.

    Google Scholar 

  • Zenk, M. H., EI-Shagi, H., Arens, H., Stokigt, J., Weiler, E. W., and Deus, B., 1977, Formation of the indole alkaloids serpentine and ajmalicine in cell suspension cultures of Catharanthus roseus, in: Plant Tissue Culture and Its Biotechnological Application ( W. Barz, E. Reinhard, and M. H. Zenk, eds.), pp. 27–43, Springer-Verlag, Berlin.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Stepan-Sarkissian, G., Fowler, M.W. (1986). The Metabolism and Utilization of Carbohydrates by Suspension Cultures of Plant Cells. In: Morgan, M.J. (eds) Carbohydrate Metabolism in Cultured Cells. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-7679-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-7679-8_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-7681-1

  • Online ISBN: 978-1-4684-7679-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics