Skip to main content

Cyclic Nucleotide Metabolism in Whole Cells

  • Chapter
Cell Regulation by Intracellular Signals

Part of the book series: NATO Advanced Study Institutes Series ((NSSA,volume 44))

  • 38 Accesses

Abstract

While we have learned a great deal about the enzymes of cyclic AMP metabolism, the control of intracellular cyclic AMP levels is only dimly perceived. This is partly because of the way in which cyclic AMP was discovered: this discovery was in fact the logical outcome of a beautiful series of experiments by Sutherland, Rall and their co-workers, designed to show that a hormone (epinephrine) could work in cell-free systems. That hormones could do so was not a popular notion at the time, so they attempted to relate, at least in qualitative fashion, events occurring in homogenates or subcellular fractions to those known to occur in the intact tissue’. How well they succeeded is evidenced by this NATO course.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. W. Sutherland and T. W. Rall, The relation of adenosine-3’5’phosphate and phosphorylase to the actions of catecholamines and other hormones, Pharmacol. Rev. 12: 265 (1960).

    CAS  Google Scholar 

  2. G. A. Robison, R. W. Butcher and E. W. Sutherland, in: “Cyclic AMP,” Academic Press, New York (1971).

    Google Scholar 

  3. W. L. Terasaki, G. Brooker, J. deVellis, P. Inglish, C.-Y. Hsu and R. D. Moyland, Involvement of cyclic AMP and protein synthesis in catecholamine refractoriness, in: “Advances in Cyclic Nucleotide Research,” W. J. George and L. J. Ignarro, eds., Vol.9, pp. 33–52, Raven Press, New York (1978).

    Google Scholar 

  4. S. Kakiuchi and T. W. Rall, The influence of chemical agents on the accumulation of adenosine-3’S’-phosphate in slices of rabbit cerebellum, Mol. Pharmacol. 4: 367–378 (1968).

    PubMed  CAS  Google Scholar 

  5. E. T. Brwoning, C. 0. Brostrom and V. E. Groffi Jr., Altered adenosine cyclic 3’,5’-monophosphate synthesis and degradation by C-6 astrocytoma cells following prolonged exposure to norepinephrine, Mol.Pharmacol. 12: 32 (1976).

    Google Scholar 

  6. V. Tom and H.-P. Bar, Adrenaline-induced desensitization of liver adenylate cyclase, Biochem. Pharmacol. 25: 2103 (1976).

    Article  Google Scholar 

  7. M. H. Makman, Properties of adenylate cyclase of lymphoid cells, Proc. Natl. Acad, Sci. U.S.A. 68: 885 (1971).

    Article  CAS  Google Scholar 

  8. J. Mickey, R. Tate and R. J. Lefkowitz, Subsensitivity of adenylate cyclase and decreased -adrenergic receptor binding after chronic exposure to (-)-isoproterenol in vitro, J. Biol. Chem. 250: 5727 (1975).

    PubMed  CAS  Google Scholar 

  9. B. Rapoport and R. J. Adams, Induction of refractoriness to thyrotropin stimulation in cultured thyroid cells, J. Biol. Chem. 251: 6653 (1976).

    PubMed  CAS  Google Scholar 

  10. J. F. Kuo and I. K. Dill, Antilypolytic action of valinomycin and nonactin in isolated adipose cells through inhibition of adenyl cyclase, Biochem. Biophys. Res. Commun. 32: 333 (1968).

    Article  PubMed  CAS  Google Scholar 

  11. J. F. Kuo and E. C. DeRenzo, A comparison of the effects of lypolytic and antilypolytic agents on adenosine 3’,5’-monophosphate levels in adipose cells as determined by prior labeling with adenine-8–14C, J. Biol. Chem. 224: 2252 (1969).

    Google Scholar 

  12. H. Shimizu, C. R. Greveling and J. W. Daly,•A radioisotopic method for measuring the formation of enenosine 3’,5’-cyclic monophosphate in incubated slices of brain, J. Neurochem. 16: 1609 (1969).

    Article  PubMed  CAS  Google Scholar 

  13. Y.-F. Su, L. Cubeddu and J. P. Perkins, Regulation of adenosine 3’,5’-monophosphate content of human astrocytoma cells: Desensitization to catecholamines and prostaglandins, J. Cyclic Nucl. Res. 2: 257–270 (1976).

    CAS  Google Scholar 

  14. Y.-F. Su, G. L. Johnson, L. Cubeddu, B. H. Leichtling, R. Ortmann and J. P. Perkins, Regulation of adenosine 3’,5’-monophosphate content of human astrocytoma cells: Mechanism of agonistspecific desensitization, J. Cyclic Nucleotide Res. 2: 271–285 (1976).

    PubMed  CAS  Google Scholar 

  15. R. Barber, R. B. Clark, L. A. Kelly and R. W. Butcher, A model of desensitization in intact cells, in: “Advances in Cyclic Nucleotide Research”, W. J. George and L. J. Ignarro, eds., Vol.9 pp. 507–516, Raven Press, New York (1978).

    Google Scholar 

  16. R. Barber, K. P. Ray and R. W. Butcher, Turnover of adenosine 3’,5’-monophosphate in WI-38 cultured fibroblasts, Biochemistry 19: 2560 (1980).

    Article  PubMed  CAS  Google Scholar 

  17. R. B. Clark and R. W. Butcher, Desensitization of adenylate cyclase in cultured fibroblasts with prostaglandin E1 and epinephrine, J. Biol. Chem. 254: 9373 (1979).

    Google Scholar 

  18. G. M. Nemecek, K. P. Roy and R. W. Butcher, Inhibition of cyclic nucleotide phosphodiesterase during exposure of WI-38 cells to prostaglandin E1, J. Biol. Chem. 254: 598–601 (1979).

    PubMed  CAS  Google Scholar 

  19. R. Barber and R. W. Butcher, The turnover of cyclic AMP in cultured fibroblasts, J. Cyclic Nucleotide Res. 6: 3 (1980).

    PubMed  CAS  Google Scholar 

  20. R. Barber, K. P. Ray and R. W. Butcher, Temperature effects on cyclic AMP accumulation in cultured fibroblasts, J. Cyclic Nucleotide Res. 6: 15 (1980).

    PubMed  CAS  Google Scholar 

  21. B. B. Hoffman, D. Mullikin-Kilpatrick and R. J. Lefkowitz, Desensitization of beta-adrenergic stimulated adenylate cyclase in turkey erythrocytes, J. Cyclic Nucleotide Res. 5: 355 (1979).

    PubMed  CAS  Google Scholar 

  22. G. A. Nickols and G. Brooker, Temperature sensitivity of cyclic AMP production and catecholamine-induced refractoriness in a rat astrocytoma cell line, Proc. Natl. Acad. Sci. U.S.A. 75: 5520 (1978).

    Article  PubMed  CAS  Google Scholar 

  23. S. Swillens, E. Lefort, R. Barber, R. W. Butcher and J. E. Dumont, Consequences of hormone-induced desensitization of adenylate cyclase in intact cells, Biochem. J. 188: 169 (1980).

    PubMed  CAS  Google Scholar 

  24. R. W. Butcher, Decreased cAMP levels in himan diploid cells exposed to cholinergic stimuli, J. Cyclic Nucleotide Res. 4: 411 (1978).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Springer Science+Business Media New York

About this chapter

Cite this chapter

Barber, R., Butcher, R.W. (1982). Cyclic Nucleotide Metabolism in Whole Cells. In: Swillens, S., Dumont, J.E. (eds) Cell Regulation by Intracellular Signals. NATO Advanced Study Institutes Series, vol 44. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-7718-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-7718-4_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-7720-7

  • Online ISBN: 978-1-4684-7718-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics