Skip to main content

Physiologic Models of Hepatic Drug Elimination

  • Chapter
New Trends in Pharmacokinetics

Part of the book series: NATO ASI Series ((NSSA,volume 221))

Abstract

Pharmacokinetic models are used primarily to describe the time course of drugs and metabolites in the body following various routes of administration. Such models take a variety of forms. Some are simply descriptive, comprising mathematical equations which make no reference to underlying physiology. The ability to use such descriptive models to interpret pharmacokinetic data and to predict outcome under a variety of conditions is extremely limited. Pharmacokinetic models which are physiologically based have greater application and have enjoyed wide usage, particularly those applied to the elimination of drugs by the liver and, to a lesser extent, by the kidneys [Rowland & Tozer, 1989]. The present chapter reviews the physiologic models that have been applied to hepatic clearance, focusing on recent advances, and comments on some problems and outstanding issues. Mention is also made of the usefulness of the isolated perfused liver for investigating drug distribution and elimination kinetics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahmad, A.B., Bennett, P.N., Rowland, M., 1983. Models of hepatic drug clearance: discrimination between the “well-stirred” and “parallel-tube” models. J. Pharm. Pharmacol. 35: 219.

    Article  PubMed  CAS  Google Scholar 

  • Barnhart, J.L., Witt, B.L., Hardison, W.G., Berk, R.N., 1983. Uptake of iopanoic acid by isolated rat hepatocytes in primary culture, Am. J. Physiol. 244: 630.

    Google Scholar 

  • Bass, L., Pond, S.M., 1988. The puzzle of rates of cellular uptake of protein bound ligands. In: “Pharmacokinetics: Mathematical and Statistical Approaches to Metabolism and Distribution of Chemicals and Drugs” ( A. Pecile and A. Rescigno, eds), page 245. Plenum Press, New York.

    Google Scholar 

  • Bass, L., Roberts, M.S., Robinson, P.J., 1987. On the relation between extended forms of the sinusoidal perfusion and of the convection-dispersion models of hepatic elimination. J. Theor. Biol. 126: 457.

    Article  PubMed  CAS  Google Scholar 

  • Bass, L., Robinson, P., Bracken, A.J., 1978. Hepatic elimination of flowing substrates: The distributed model. Theor. Biol. 72: 161.

    Article  CAS  Google Scholar 

  • Burczynski, F.J., Cai, Z.-S., Moran, J.B., Forker, E.L., 1989. Palmitate uptake by cultured hepatocytes: albumin binding and stagnant layer phenomenon. Am. J. Physiol. 257: G584.

    PubMed  CAS  Google Scholar 

  • Ching, M.S., Morgan, D.J., Smallwood, R.A., 1989. Models of hepatic elimination: implications from studies of the simultaneous elimination of tauracholate and diazepam by isolated rat liver under varying conditions of binding. J. Pharmacol. Exp. Ther. 250: 1048.

    PubMed  CAS  Google Scholar 

  • Colburn, W.A., 1982. Albumin does not mediate the removal of tauracholate by the rat liver. J. Pharm. Sci. 71: 373.

    Article  PubMed  CAS  Google Scholar 

  • Colburn, W.A., 1983. Albumin binding and hepatic uptake: the importance of model selection - a response. J. Pharm. Sci. 72: 1233.

    Article  Google Scholar 

  • de Lannoy, I.A.M., Pang, K.S., 1987. Diffusional barriers on drug and metabolite kinetics. Drug Metab. Dispos. 15: 51.

    Google Scholar 

  • Evans, A.M., Hussein, Z., Rowland, M., 1991. A two-compartment dispersion model describes the hepatic outflow profile of diclofenac in the presence of its binding protein. J. Pharm. Pharmacol.

    Google Scholar 

  • Fleischer, A.B., Shurmantine, W.O., Luxon, B.A., Forker, E.L., 1986 Palmitate uptake by hepatocyte monolayers. Effect of albumin binding. J. Clin. Invest. 77: 964.

    Article  PubMed  CAS  Google Scholar 

  • Forker, E.L., Luxon, B., 1978. Hepatic transport kinetics and plasma disappearance curves: distributed modeling versus conventional approach. Am. J. Physiol. 235: E648

    PubMed  CAS  Google Scholar 

  • Forker, E.L., Luxon, B.A., 1981. Albumin helps mediate removal of tauracholate by rat liver. J. Clin. Invest. 67: 1517.

    Article  PubMed  CAS  Google Scholar 

  • Forker E.L., Luxon, B.A., 1983a. Albumin binding and hepatic uptake: the importance of model selection. J. Pharm. Sci. 72: 1232.

    Article  PubMed  CAS  Google Scholar 

  • Forker, E.L., Luxon, B.A., 1983b. Analyzing tracer disappearance curves to study hepatic transport kinetics. Am. J. Physiol. 244: G573.

    PubMed  CAS  Google Scholar 

  • Forker, E.L., Luxon, B.A., 1985a. Effects of unstirred Disse fluid, nonequilibrium binding, and surface-mediated dissociation on hepatic removal of albumin-bound organic anions. Am. J. Physiol. 248: G709.

    PubMed  CAS  Google Scholar 

  • Forker, E.L., Luxon, B.A., 1985b. Lumpers vs. distributers. Hepatology 5: 1236.

    Article  PubMed  CAS  Google Scholar 

  • Forker, E.L., Luxon, B.A., 1986. Models of hepatic elimination: a critical commentary. Hepatology 6: 340.

    Article  PubMed  CAS  Google Scholar 

  • Forker, E.L., Luxon, B.A., Snell, M., Shurmantine, W.O., 1982. Effect of albumin binding on the hepatic transport of rose bengal: surface mediated dissociation of limited capacity. J. Pharmacol. Exp. Ther. 233: 342.

    Google Scholar 

  • Goresky, C.A., 1983. Kinetic interpretation of hepatic multiple-indicator dilution studies. Am. J. Physiol. 245: G1.

    PubMed  CAS  Google Scholar 

  • Goresky, C.A., Bach, G.G., Nadeau, B.E., 1975. Red cell carriage of label: its limiting effect on the exchange of materials in the liver. Circ. Res. 36: 328.

    PubMed  CAS  Google Scholar 

  • Goresky, C.A., Rose, C.P., 1977. Blood-tissue exchange in liver and heart: the influence of heterogeneity of capillary transit times. Fed. Proc. 36: 2629.

    PubMed  CAS  Google Scholar 

  • Goresky, C.A., Silverman, M., 1964. Effect of correction of catheter distortion on calculated liver sinusoidal volumes. Am. J. Physiol. 207: 883.

    PubMed  CAS  Google Scholar 

  • Gumucio, J.J., 1983. Functional and anatomic heterogeneity in the liver acinus: impact on transport. Am. J. Physiol. 244: G578.

    PubMed  CAS  Google Scholar 

  • Horie, T., Mizuma, T., Kasai, S., Awazu, S., 1988. Conformational change in plasma albumin due to interaction with isolated rat hepatocyte. Am. J. Physiol. 254: G465.

    PubMed  CAS  Google Scholar 

  • Jansen, J.A., 1981. Influence of plasma protein binding kinetics on hepatic clearance assessed from a “tube” model and a “well-stirred” model. J. Pharmacokin. Biopharm. 9: 15.

    Article  CAS  Google Scholar 

  • Jones, D.B., Morgan, D.J., Mihaly, G.W., Webster, L.K., Smallwood, R.A., 1984. Discrimination between the venous equilibrium and sinusoidal models of hepatic drug elimination in the isolated perfused rat liver by perturbation of propranolol protein binding. J. Pharmacol. Exp. Ther. 229: 522.

    PubMed  CAS  Google Scholar 

  • Jones, D.R., Hall, S.D., Jackson, E.K., Branch, R.A., Wilkinson, G.R., 1988. Brain uptake of benzodiazepines: effect of lipophilicity and plasma protein binding. J. Pharmacol. Exp. Ther. 245: 816.

    PubMed  CAS  Google Scholar 

  • Keiding, S., Chiarantini, E., 1978. Effect of sinusoidal perfusion on galactose elimination kinetics in perfused rat liver. J. Pharmacol. Exp. Ther. 204: 465.

    Google Scholar 

  • Lee, H.-J., Chiou, W.L., 1989a. Erythrocytes as barriers for drug elimination in the isolated rat liver. I. Doxorubicin. Pharm. Res. 6: 833.

    Article  CAS  Google Scholar 

  • Lee, H.-J., Chiou, W.L., 1989b. Erythrocytes as barriers for drug elimination in the isolated rat liver. II. Propranolol. Pharm. Res. 6: 840.

    Article  CAS  Google Scholar 

  • Levenspiel, O., 1972. “Chemical Reaction Engineering”, pages 253–315. Wiley, New York.

    Google Scholar 

  • Luxon, B.A., Forker, E.L., 1982. Simulation and analysis of hepatic indicator dilution curves. Am. J. Physiol. 243: G76.

    PubMed  CAS  Google Scholar 

  • Luxon, B.A., King, P.D., Forker, E.L., 1982. How to measure first-order hepatic transfer coefficients by distributed modeling of a recirculating rat liver perfusion system. Am. J. Physiol. 243: G518.

    PubMed  CAS  Google Scholar 

  • Miyauchi, S., Sugiyama, Y., Sawada, Y., Morita, K., Iga, T., Hanano, M., 1987. Kinetics of hepatic transport of 4-methylumbelliferone in rats. Analysis by multiple indicator dilution method. J. Pharmacokin. Biopharm. 15: 25.

    Article  CAS  Google Scholar 

  • Mizuma, T., Horie, T., Awazu, S., 1985. The effect of albumin on the uptake of bromosulfophthalein by isolated rat hepatocytes,. J. Pharmacobio-Dyn. 8: 90.

    Article  PubMed  CAS  Google Scholar 

  • Morgan, D.J., Jones, D.B., Smallwood, R.A., 1985. Modeling of substrate elimination by the liver: has the albumin receptor model superseded the well-stirred model ? Hepatology 5: 1231.

    Article  PubMed  CAS  Google Scholar 

  • Morgan, D.J., Raymond, K., 1982. Use of unbound drug concentration in blood to discriminate between two models of hepatic drug elimination. J. Pharm. Sci. 71: 600.

    Article  PubMed  CAS  Google Scholar 

  • Morgan, D.J., Smallwood, R.A., 1990. Clinical significance of pharmacokinetic models of hepatic elimination. Clin. Pharmacokin. 18: 61.

    Article  CAS  Google Scholar 

  • Nunes, R., Kiang, C.-L., Sorrentino, D., Berk, P.D., 1988. “Albumin-receptor” uptake kinetics do not require an intact lobular architecture and are not specific for albumin. J. Hepatology 7:293.

    Article  CAS  Google Scholar 

  • Oie, S., Fiori, F., 1985. Effect of albumin and alpha-1-acid glycoprotein on elimination of prazocin and antipyrine in the isolated perfused rat liver. J. Pharmacol. Exp. Ther. 234: 636.

    PubMed  CAS  Google Scholar 

  • Pang, K.S., 1983. The effects of intercellular distribution of drug metabolizing enzymes on the kinetics of stable metabolite formation and elimination by liver: first-pass effects. Drug Metab. Rev. 14: 61.

    CAS  Google Scholar 

  • Pang, K.S., Mulder, G.J., 1990. The effect of hepatic blood flow on formation of metabolites. Drug Metab. Dispos. 18: 270.

    CAS  Google Scholar 

  • Pang, K.S., Rowland, M., 1977a. Hepatic clearance of drugs. 1. Theoretical considerations of a “well-stirred” model and a “parallel-tube” model. Influence of hepatic blood flow, plasma and blood cell binding and hepatocellular enzymatic activity on hepatic drug clearance. J. Pharmacokin. Biopharm. 5: 625.

    Article  CAS  Google Scholar 

  • Pang, K.S., Rowland, M., 1977b. Hepatic clearance of drugs. II. Experimental evidence for acceptance of the “well-stirred” model over the “parallel-tube” model using lidocaine in the perfused rat liver in situ preparation. J. Pharmacokin. Biopharm. 5: 655.

    Article  CAS  Google Scholar 

  • Pang, K.S., Stillwell, R.N., 1983. An understanding of the role of enzymic localization of the liver on metabolite kinetics: a computer simulation. J. Pharmacokin. Biopharm. 11: 451.

    Article  CAS  Google Scholar 

  • Pardridge, W.M., 1986. Transport of plasma protein-bound drugs into tissues in vivo. In: “Symposia Medica Hoechst, Volume 20: Protein binding and drug transport” ( J.-P. Tillement and E. Lindenlaub, eds.). Schattauer Verlag, New York.

    Google Scholar 

  • Roberts, M.S, Donaldson, J.D., Jackett, D., 1989. Availability predictions by hepatic elimination models for Michaelis-Menten kinetics. J. Pharmacokin. Biopharm. 17: 687.

    Article  CAS  Google Scholar 

  • Roberts, M.S., Donaldson, J.D., Rowland, M., 1988. Models of hepatic elimination: Comparison of stochastic models to describe residence time distributions and to predict the influence of drug distribution, enzyme heterogeneity and systemic recycling on hepatic elimination. J. Pharrnacokin. Biopharm. 16: 41.

    Article  CAS  Google Scholar 

  • Roberts, M.S., Fraser, S., Wagner, A., McLeod, L., 1990. Residence time distributions of solutes in the perfused rat liver using a dispersion model of hepatic elimination. 1. Effect of changes in perfusate flow and albumin concentration on sucrose and tauracholate. J. Pharmacoldn. Biophartn. 18: 209.

    Article  CAS  Google Scholar 

  • Roberts, M.S., Rowland, M., 1986a. Correlation between in-vitro microsomal enzyme activity and whole organ hepatic elimination kinetics: analysis with a dispersion model. J. Pharm. Pharmacol. 38: 177.

    Article  PubMed  CAS  Google Scholar 

  • Roberts, M.S., Rowland, M., 1986b. A dispersion model of hepatic elimination. 1. Formulation of the model and bolus considerations. J. Pharrnacokin. Biopharm. 14: 227.

    Article  CAS  Google Scholar 

  • Roberts, M.S., Rowland, M., 1986c. A dispersion model of hepatic elitnination. 2. Steady-state considerations - influence of hepatic blood flow, binding within blood, and hepatocellular enzyme activity. J. Pharmacoldn. Biopharrn. 14: 261.

    Article  CAS  Google Scholar 

  • Rowland, M., Leitch, D., Fleming, G., Smith, B., 1984. Protein binding and hepatic clearance: Discrimination between models of hepatic clearance with diazepam, a drug of high intrinsic clearance, in the isolated perfused rat liver preparation. J. Pharmacokin. Biopharm. 12: 129.

    Article  CAS  Google Scholar 

  • Rowland, M., Tozer, T.N., 1989. “Clinical Pharmacokinetics: concepts and applications”, Second edition. Lea & Febiger, Philadelphia.

    Google Scholar 

  • Schwab, A.J., Barker, F., Goresky, C.A., Pang, K.S., 1990. Transfer of enalaprilat across rat liver cell membranes is barrier limited. Am. J. Physiol. 258: G461.

    PubMed  CAS  Google Scholar 

  • Smallwood, R.H., Morgan, D.J., Mihaly, G.W., Jones, D.B., Smallwood, R.A., 1988. Effect of plasma protein binding on elimination of tauracholate by isolated perfused rat liver: comparison of venous equilibrium, undistributed and distributed sinusoidal, and dispersion models. J. Pharmacokin. Biopharm. 16: 377.

    Article  CAS  Google Scholar 

  • Smith, D.J., Grossbard, M., Gordon, E.R., Boyer, J.L., 1987. Tauracholate uptake by isolated skate hepatocytes: effect of albumin. Am. J. Physiol. 252: G479.

    PubMed  CAS  Google Scholar 

  • Stremmel, W., Potter, B.J., Berk, P.D., 1983. Studies of albumin binding to rat liver plasma membranes. Implications for the albumin receptor hypothesis. Biochim. Biophys. Acta. 756: 20.

    Article  PubMed  CAS  Google Scholar 

  • Tsao, S.C., Sugiyama, Y., Sawada, Y., Iga, T., Hanano, M., 1988. Kinetic analysis of albumin-mediated uptake of warfarin by perfused rat liver. J. Pharmacokin. Biopharm. 16: 165.

    Article  CAS  Google Scholar 

  • Tsao, S.C., Sugiyama, Y., Sawada, Y., Nagase, S., Iga, T., Hanano, M., 1986. Effect of albumin on hepatic uptalce of warfarin in normal and analbuminemic mutant rats: analysis by multiple indicator dilution methoch J. “Pharmacokin. Biopharm. 14: 51.

    Article  CAS  Google Scholar 

  • van der Sluijs, P., Postema, B., Meijer, D.K.F., 1987. Lactosylation of albumin reduces uptake rates of dibromosulfophthalein in perfused rat liver and dissociation rate from albumin in vitro. Hepatology 7: 688.

    Article  PubMed  Google Scholar 

  • Weisiger, R., Gollan, J., Ockner, R., 1981. Receptor for albumin on the liver cell surface may mediate uptake of fatty acids and other albumin bound substances. Science 211: 1048.

    Article  PubMed  CAS  Google Scholar 

  • Weisiger, R.A., 1985. Dissociation from albumin: A potentially rate-limiting step in the clearance of substances by the liver. Proc. Natl. Acad. Sci (U.S.A) 82: 1563.

    Article  CAS  Google Scholar 

  • Weisiger, R.A., 1986. Non-equilibrium drug binding and hepatic drug removal. In: “Symposia Medica Hoechst, Volume 20: Protein binding and drug transport” ( J.-P. Tillement and E. Lindenlaub, eds.). Schattauer Verlag, New York.

    Google Scholar 

  • Weisiger, R.A., Zacks, C.M., Smith, N.D., Boyer, J.L., 1984. Effect of albumin binding on extraction of sulfobromophthalein by perfused elasmobranch liver: evidence for dissociation-limited uptake. Hepatology 4: 492.

    Article  PubMed  CAS  Google Scholar 

  • Wen, C.Y., Fan, L.T., 1985. “Models for Flow Systems and Chemical Reactors”. Marcel Dekker, New York.

    Google Scholar 

  • Wolkoff, A.W., 1987. The role of an albumin receptor in hepatic organic anion uptake: the controversy continues. Hepatology 7: 777.

    Article  PubMed  CAS  Google Scholar 

  • Xu, X., Pang, K.S., 1989. Hepatic modeling of metabolite kinetics in sequential and parallel pathways: salicylamide and gentisamide metabolism in perfused rat liver. J. Pharmacokin. Biopharm. 17: 645.

    Article  CAS  Google Scholar 

  • Yano, Y., Yamaoka, K., Aoyama, Y. Tanaka, H.,1989. Two-compartment dispersion model for analysis of organ perfusion system of drugs by Fast Inverse Laplace Transform (FILT). J. Pharmacokin. Biopharm. 17: 179.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Plenum Press, New York

About this chapter

Cite this chapter

Rowland, M., Evans, A.M. (1991). Physiologic Models of Hepatic Drug Elimination. In: Rescigno, A., Thakur, A.K. (eds) New Trends in Pharmacokinetics. NATO ASI Series, vol 221. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-8053-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-8053-5_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-8055-9

  • Online ISBN: 978-1-4684-8053-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics