Skip to main content

The Physics of Laser-Plasma Interaction in Gaseous Targets

  • Chapter
Laser Interaction and Related Plasma Phenomena

Abstract

In studying the fundamental physics of laser-plasma interaction, gaseous targets offer some definite advantages over solid targets. Because they are experimentally cleaner and more controllable, gaseous targets have enabled us to isolate some specific physical processes. For example, we have found fast electron emission in a direction 30° away from the electric vector of the light wave, but in the plane of optical polarization. This effect is the clear signature of the resonant acceleration mechanism for laser beam absorption. The angle of electron emission determines the plasma density scale length. In addition, we have used the sudden plasma nucleation in a gas target as an optical shutter. This has resulted in the generation of 30 psec CO2 laser pulses—a record. There will also be some discussion of the possibility of compressing a gaseous target to produce net fusion energy.

Presented at the Fourth Workshop on “Laser Interaction and Related Plasma Phenomena” held at RPI, Troy, New York, November 8-12, 1976.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Paul Kolodner and Eli Yablonovitch, Phys. Rev. Lett. 37, 1754 (1976).

    Article  ADS  Google Scholar 

  2. H. S. Kwok and Eli Yablonovitch, Appl. Phys. Lett. 30, Feb. 1, 1977.

    Google Scholar 

  3. Jerry G. Black and Eli Yablonovitch, IEEE J. of Quant. Elec. JQE-13, April, (1976).

    Google Scholar 

  4. Eli Yablonovitch, Phys. Rev. Lett. 31, 877 (1973).

    Article  ADS  Google Scholar 

  5. H. S. Kwok and Eli Yablonovitch, Appl. Phys. Lett. 27, 583 (1975).

    Article  ADS  Google Scholar 

  6. J. P. Friedberg, R. W. Mitchell, R. L. Morse and L. I. Rudsinski, Phys. Rev. Lett. 28, 795 (1972).

    Article  ADS  Google Scholar 

  7. H. G. Ahlstrom et al., J. Opt. Soc. Amer. to be published.

    Google Scholar 

  8. Eli Yablonovitch, Appl. Phys. Lett. 23, 121 (1973).

    Article  ADS  Google Scholar 

  9. Eli Yablonovitch, Phys. Rev. A10, 1888 (1974).

    ADS  Google Scholar 

  10. R. G. Brewer and R. L. Shoemaker, Phys. Rev. A6, 2001 (1972).

    ADS  Google Scholar 

  11. E. Yablonovitch and J. Goldhar, Appl. Phys. Lett. 25, 580 (1974).

    Article  ADS  Google Scholar 

  12. H. S. Kwok and Eli Yablonovitch, Rev. Sei. Instr. 46, 814 (1975).

    Article  ADS  Google Scholar 

  13. O. R. Wood, Proc. of IEEE, 62, 355 (1974).

    Article  Google Scholar 

  14. E. Fill, K. Hohla, G. T. Schappert and R. Volk, Appl. Phys. Lett. 29, 805 (1976).

    Article  ADS  Google Scholar 

  15. H. S. Kwok and Eli Yablonovitch, Opt. Comm. to be published.

    Google Scholar 

  16. Yu, P. Raizer, Sov. Phys. JETP, 21, 1009 (1965).

    ADS  Google Scholar 

  17. Eli Yablonovitch, Phys. Fluids, to be published.

    Google Scholar 

  18. Eli Yablonovitch, Phys. Rev. Lett. 35, 1346 (1975).

    Article  ADS  Google Scholar 

  19. S. I. Anisimov, M. F. Ivanov, P. P. Pashinin and A. M. Prokhorov, JETP Letters 22, 161 (1975).

    ADS  Google Scholar 

  20. P. K. Kaw, J. Dawson, W. Kruer, C. Oberman and E. Valeo, Kvantovaya Elektron (Moscow) 1, 3 (1971). [Sov. J. Quant. Elec. 1, 205 (1975)]

    Google Scholar 

  21. J. P. Friedberg, R. W. Mitchell, R. C. Morse and L. I. Rudsinski, Phys. Rev. Lett. 28, 795 (1972).

    Article  ADS  Google Scholar 

  22. K. G. Estabrook, E. J. Valeo and W. C. Kruer, Phys. Fluids 18, 1151 (1975).

    Article  ADS  Google Scholar 

  23. J. M. Dawson, Phys. Rev. 113, 382 (1959).

    Article  ADS  Google Scholar 

  24. J. Albritton and P. Koch, Phys. Fluids 18, 1136 (1975).

    Article  ADS  Google Scholar 

  25. V. L. Ginzburg, The Propagation of Electromagnetic Waves in Plasmas, (Pergamon, Oxford, 1970), 2nd ed., see esp. Section 20.

    Google Scholar 

  26. E. Segré, Nuclei and Particles (Benjamin, New York, 1965).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1977 Plenum Press, New York

About this chapter

Cite this chapter

Yablonovitch, E. (1977). The Physics of Laser-Plasma Interaction in Gaseous Targets. In: Schwarz, H.J., Hora, H. (eds) Laser Interaction and Related Plasma Phenomena. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-8103-7_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-8103-7_21

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-8105-1

  • Online ISBN: 978-1-4684-8103-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics