Skip to main content

Contractile Function as a Determinant of Muscle Growth

  • Chapter
Cell and Muscle Motility

Abstract

One of the characteristics of a muscle is its ability to adapt to the extent and type of work it is required to perform, both in health and in disease. The adaptive response of muscle to altered physiological demands can take several forms: (1) changes in size, such as hypertrophy of existing muscle cells secondary to elevated afterload in the myocardium; (2) changes in the relative amount of constituent proteins, such as an increase in the cytochrome C content produced by endurance training; (3) changes in the properties of constituent proteins, such as appearance of the “slow” myosin isozyme after stimulation of fast muscles with the frequency that normally occurs in nerves that supply slow muscles; and (4) a combination of the foregoing changes, such as the hyperthyroid state in the rabbit, in which the size of the heart and its cytochrome C content are increased and in which synthesis of a new molecular form of myosin is initiated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adamo, S., Zani, B., Siracusa, G., and Molinaro, M., 1976, Expression of differentiative traits in the absence of cell fusion during myogenesis in culture, Cell Differ. 5: 53.

    Article  Google Scholar 

  • Adelstein, R. S., Pollard, T. D., and Kuehl, W. M., 1971, Isolation and characterization of myosin and two myosin fragments from human blood platelets, Proc. Natl. Acad. Sci. U.S.A. 68: 2703.

    Article  Google Scholar 

  • Adelstein. R S., Conti, M. A., Johnson, G., Pastan, I., and Pollard, T. D., 1972, Isolation and characterization of myosin from cloned mouse fibroblasts, Proc. Natl. Acad. Sci. U.S.A. 69: 3693.

    Article  Google Scholar 

  • Amphlett, G. W., Perry S. V., Suska, J., Brown, M., and Vrbova, G., 1975, Cross innervation and the regulatory system of rabbit soleus muscle, Nature (London) 257: 602.

    Article  Google Scholar 

  • Amphlett, G. W., Syska, H., and Perry, S. V., 1976, The polymorphic forms of tropomyosin and troponin I in developing rabbit skeletal muscle, FEBS LETT. 63: 22.

    Article  Google Scholar 

  • Arndt, I., and Pepe, F. A., 1975, Antigenic specificity of red and white muscle myosin, J. Histochem. Cytochem. 23: 159.

    Article  Google Scholar 

  • Askanas, V., Shafiq, S., and Milhorat, A., 1972, Histochemistry of cultured aneural chick muscle: Morphological maturation without differentiation of fiber types, Exp. Neurol. 37: 218.

    Article  Google Scholar 

  • Bârâny, M., 1967, ATPase activity of myosin correlated with speed of muscle shortening, J. Gen. Physicol. 50: 197.

    Article  Google Scholar 

  • Bârâny, M., and Close, R. I., 1971, The transformation of myosin in cross-innervated rat muscles, J. Physiol. 213: 455.

    Google Scholar 

  • Benoff, S., and Nadal-Ginard, B., 1979, Most myosin heavy chain mRNA in L6E9 rat myotubes has a short poly (A) tail, Proc. Natl. Acad. Sci. U.S.A. 76: 1853.

    Article  Google Scholar 

  • Beranek, R., Hnfk, P., and Vrbovâ, G., 1957, Denervation atrophy of various skeletal muscles in rats, Physiol. Bohemoslov. 6: 200.

    Google Scholar 

  • Bischoff, R., and Holtzer, H., 1969, Mitosis and the processes of differentiation of myogenic cells in vitro, J. Cell Biol. 41: 188.

    Article  Google Scholar 

  • Bischoff, R., and Holtzer, H., 1970, Inhibition of myoblast fusion after one round of DNA synthesis in 5-bromodeoxyurdine, J. Cell Biol. 44: 134.

    Article  Google Scholar 

  • Buckingham, M. E. 1977, Muscle protein synthesis and its control during the differentiation of skeletal muscle cells in vitro, Int. Rev. Biochem. 15: 269.

    Google Scholar 

  • Buckingham, M. E., Caput, N., Cohen, A., Whalen, R. G., and Gros, F., 1974, The synthesis and stability of cytoplasmic messenger RNA during myoblast differentiation in culture, Proc. Natl. Acad. Sci. U.S.A. 71: 1466.

    Article  Google Scholar 

  • Buckley, P. A., and Konigsberg, I. R., 1973, Myogenic fusion and the duration of the postmitototic gap (G,), Dev. Biol. 37: 193.

    Article  Google Scholar 

  • Bugaisky, L., and Zak, R., 1979, Cellular growth of cardiac muscle after birth, Tex. Rep. Biol. Med. 39: 123.

    Google Scholar 

  • Buller, A., Eccles, J., and Eccles, R., 1960a, Differentiation of fast and slow muscles in the cat hind limb, J. Physiol. (London) 150: 399.

    Google Scholar 

  • Buller, A., Eccles, J., and Eccles, R., 1960b, Interaction between motoneurones and muscles in respect of the characteristic speeds of their responses, J. Physiol. (London) 150: 417.

    Google Scholar 

  • Buller, A. J., Mommaerts, W. F. H. M., and Seraydarian, K., 1969, Enzymatic properties of myosin in fast and slow twitch muscles of the cat following cross-innervation, J. Physiol. 205: 581.

    Google Scholar 

  • Carrow, R. E., Brown, R. E., and Van Huss, W. D., 1967, Fiber sizes and capillary to fiber ratios in skeletal muscle of exercised rats, Anat. Rec. 159: 33.

    Article  Google Scholar 

  • Chi, J. C. H., Rubenstein, N., Strahs, K., and Holtzer, H., 1975a, Synthesis of myosin heavy and light chains in muscle cultures, J. Cell Biol. 67: 523.

    Article  Google Scholar 

  • Chi, J. C., Fellini, S. A., and Holtzer, H., 1975b, Differences among myosins synthesized in non-myogenic cells, presumptive myoblasts, and myoblasts, Proc. Natl. Acad. Sci. U.S.A. 72: 4999.

    Article  Google Scholar 

  • Chiu, J.-F., Brade, W. P., Thomson, J., Tsai, Y.-H., and Hnilica, L. S., 1975, Nonhistone protein phosphorylation in normal and neoplastic rat liver chromatin, Exp. Cell Res. 91: 200.

    Article  Google Scholar 

  • Chizzonite, R. A., Everett, A. W., Clark, W. A., Jakovcic, S., Rabinowitz, M., and Zak, R., 1980, Immunological differences between cardiac myosin from normal and thyrotoxic rabbits as detected by monoclonal antibodies, J. Cell Biol. 87: 260a.

    Google Scholar 

  • Claycomb, W. C., 1975, Biochemical aspects of cardiac muscle differentiation: Deoxyribonucleic acid synthesis and nuclear cytoplasmic deoxyribonucleic acid polymerase activity, J. Biol. Chem. 250: 3229.

    Google Scholar 

  • Claycomb, W. C., 1976a, Biochemical aspects of cardiac muscle differentiation: Possible control of deoxyribonucleic acid synthesis and call differentiation by adrenergic innervation and cyclic adenosine 3’,5’-monophosphate, J. Biol. Chem. 251: 6082.

    Google Scholar 

  • Claycomb, W. C., 1976b, Poly (adenosine diphosphate ribose) polymerase activity and nicotonamide adenine dinucleotide in differentiating cardiac muscle, Biochem J. 154: 387.

    Google Scholar 

  • Costill, D. L., Daniels, J., Evans, W., Fink, E. W., Krahenbuhl, G., and Saltin, B., 1976, Skeletal muscle enzymes and fiber composition in male and female track athletes, J. Appl. Physiol. 40: 149.

    Google Scholar 

  • Cummins, P., and Perry, S. V., 1974, Chemical and immunochemical characteristics of tropomyosins from striated and smooth muscle, Biochem. J. 141: 43.

    Google Scholar 

  • Cutilletta, A. F., Aumont, M.-C., Nag, A. C., and Zak, R., 1977, Separtaion of muscle and non-muscle cells from adult rat myocardium: An application to the study of RNA polymerase, J. Mol. Cell. Cardiol. 9: 399.

    Article  Google Scholar 

  • Cutilletta, A. F., Rudnik, M., and Zak, R., 1978, Muscle and non-muscle cell RNA polymerase activity during the development of myocardial hypertrophy, J. Mol. Cell. Cardiol. 10: 677.

    Article  Google Scholar 

  • Albis, A., Pantaloni, C., and Bechet, J.J., 1979a, An electrophoretic study of native myosin isoenzymes and of their subunit content, Eur. J. Biochem. 99: 261.

    Article  Google Scholar 

  • d’Albis, A., Pantaloni, C., and Bechet, J.-J., 1979b, Structural relationship of myosin isoenzymes: Proteolytic digestion pattern of heavy chain components from fast muscles, and comparison with other muscle types, FEBS LETT. 106: 81.

    Article  Google Scholar 

  • Dhoot, G. K., and Perry, S. V., 1979, Distribution of polymorphic forms of troponin components and tropomyosin in skeletal muscle, Nature (London) 278: 714.

    Article  Google Scholar 

  • Dhoot, G. K., Gell, P., and Perry, S. V., 1978, The localization of the different forms of troponin I in skeletal and cardiac muscle cells, Exp. Cell Res. 117: 357.

    Article  Google Scholar 

  • Dhoot, G. K., Fearson, N., and Perry, S. V., 1979, Polymorphic forms of troponin T and troponin C and their localization in striated muscle cell type, Exp. Cell Res. 122: 339.

    Article  Google Scholar 

  • Doering, M., and Fischman, D., 1974, The in vitro cell fusion of embryonic chick muscle without DNA synthesis, Dev. Biol. 36: 225.

    Article  Google Scholar 

  • Dowell, R. T., and McManus, R. E., 1978, Pressure-induced cardiac enlargment in neonatal and adult rats: Left ventricular functional characteristics and evidence of cardiac muscle cell proliferation in the neonate, Circ. Res. 42: 303.

    Article  Google Scholar 

  • Doyle, C. M., Zak, R., and Fischman, D. A., 1974, The correlation of DNA synthesis and DNA polymerase activity in the developing chick heart, Dev. Biol. 33: 133.

    Article  Google Scholar 

  • Dubowitz, V., 1965, Enzyme histochemistry of skeletal muscle, J. Neurol. Neurosurg. Psychiat. 28: 516.

    Article  Google Scholar 

  • Edgerton, V. R., Simpson, D. R., Barnard, R. J., and Peter, J. B., 1970, Phosphorylase activity in acutely exercised muscle, Nature (London) 225: 866.

    Article  Google Scholar 

  • Elzinga, M., and Lu, R. C., 1976, Comparative amino acid sequence studies of actin, in: Contractile Systems in Non-Muscle Tissue (S. V. Perry, A. Margreth, and R. S. Adelstein, ed.), pp. 29–37, North-Holland, Amsterdam.

    Google Scholar 

  • Emerson, C. P., and Beckner, S. K., 1975, Activation of myosin synthesis in fusing and mononucleated myoblasts, J. Mol. Biol. 93: 431.

    Article  Google Scholar 

  • Everett, A. W., and Zak, R., 1980, Control of protein synthesis and degradation in normal and diseased myocardium, in: Drug-induced Heart Diseases ( M. Bristow, ed.), pp. 63–80, Elsevier, Amsterdam.

    Google Scholar 

  • Fine, R. E., and Blitz, A. L., 1975, A chemical comparison of tropomyosins from musde and non-muscle tissues, J. Mol. Biol. 95: 447.

    Article  Google Scholar 

  • Fischman, D. A., 1972, Development of striated muscle, in: The Structure and Function of Muscle, Vol. 1 ( G. H. Boume, ed.), pp. 75–178, Academic Press, New York.

    Google Scholar 

  • Flink, I. L., and Morkin, E., 1977, Evidence for a new cardiac myosin species in thyrotoxic rabbit, FEBS LETT. 81: 391.

    Article  Google Scholar 

  • Flink, I. L., Morkin, E., and Elzinga, M., 1977, Cyanogen bromide peptide from bovine cardiac myosin containing two essential thiols, FEBS LETT. 84: 261.

    Article  Google Scholar 

  • Flink, I. L., Rader, J. H., Banerjee, S. K., and Morkin, E., 1978, Atrial and ventricular cardiac myosins contain different heavy chain species, FEBS LETT. 94: 125.

    Article  Google Scholar 

  • Flink, I. L. Rader, J. H., and Morkin, E., 1979, Thyroid hormone stimulates synthesis of a cardiac myosin isozymes, J. Biol. Chem. 254: 3105.

    Google Scholar 

  • Florini, J. R., and Dankberg, F. L., 1971, Changes in RNA and protein synthesis during induced cardiac hypertrophy, Biochemistry 10: 530.

    Article  Google Scholar 

  • Floros, J., Chang, H., and Baserga, R., 1978, Stimulated DNA synthesis in frog nuclei by cytoplasmic extracts of temperature sensitive mammalian cells, Science 201: 651.

    Article  Google Scholar 

  • Fogel, M., and Defendi, V., 1967, Infection of muscle cultures from various species with oncogenic DNA viruses (SV40 and polyoma), Proc. Natl. Acad. Sci. U.S.A. 58: 967.

    Article  Google Scholar 

  • Garrels, J. I., and Gibson, W., 1976, Identification and characterization of multiple forms of actin, Cell 9: 793.

    Article  Google Scholar 

  • Gauthier, G. F., and Lowey, S., 1979, Distribution of myosin isoenzymes among skeletal muscle fiber types, J. Cell Biol. 81: 10.

    Article  Google Scholar 

  • Gauthier, G. F., Lowey, S. and Hobbs, A. W., 1978, Fast and slow myosin in developing muscle fibers, Nature (London) 274: 25.

    Article  Google Scholar 

  • Gibson, R., and Harris, P., 1974, The in vitro and in vivo effects of polyamines on cardiac protein biosynthesis, Cardiovasc. Res. 8: 668.

    Article  Google Scholar 

  • Goldberg, A. L., 1967, Protein synthesis in tonic and phasic skeletal muscles, Nature (London) 216: 1219.

    Article  Google Scholar 

  • Goldspink, G., 1972, Postembryonic growth and differentiation of striated muscle, in The Structure and Function of Muscle, Vol. 1 ( G. H. Bourne, ed.), pp. 181–236, Academic Press, New York.

    Google Scholar 

  • Goldstein, M. A., Claycomb, W. C., and Schwartz, A., 1974, DNA synthesis and mitosis in well-differentiated mammalian cardiocytes, Science 183: 212.

    Article  Google Scholar 

  • Gollnick, P. D., Armstrong, R. B., Saubert, C. W., Piehl, K., and Saltin, B., 1972, Enzyme activity and fiber composition in skeletal muscles of untrained and trained men, J. Appt. Physiol. 33: 312.

    Google Scholar 

  • Gordon, T., and Vrbovâ, G. 1975, The influence of innervation on the differentiation of contractile speed of developing chick muscles, Pfluegers Arch. 360: 199.

    Article  Google Scholar 

  • Gordon, T., Purves, R. D., and Vrbovâ, G., 1977, Differentiation of electrical and contractile properties of slow and fast muscle fibers, J. Physiol. 269: 535.

    Google Scholar 

  • Goss, R. J., 1964, Adaptive Growth, pp. 9–360, Academic Press, New York.

    Google Scholar 

  • Grohmann, D., 1961, Mitotische Wachstumsintensität des embryonalen und fetalen Hühnchenherzens und ihre Bedeutung für die Entstehung von Herzmissbildungen, Z. Zellforsch. 55: 104.

    Article  Google Scholar 

  • Grove, D., Zak, R., Nair, K. G., and Aschenbrenner, V., 1969, Biochemical correlates of cardiac hypertrophy. IV. Observations on the cellular organization of growth during myocardial hypertrophy in the rat, Circ. Res. 25: 473.

    Article  Google Scholar 

  • Gruenstein, E., and Rich, A., 1975, Non-identity of muscle and non-muscle actins, Boichem. Biophys. Res. Commun. 64: 472.

    Article  Google Scholar 

  • Hall-Craggs, E. C. B., and Lawrence, C. A., 1970, Longitudinal fiber division in skeletal musde: A light and electron-microscope study, Z. Zellforsch. 109: 481.

    Article  Google Scholar 

  • Hanzlikovâ, V., Mackovâ, E. V., and Hnik, P., 1975, Satellite cells of the rat soleus muscle in the process of compensatory hypertrophy combined with denervation, Cell Tissue Res. 160: 411.

    Article  Google Scholar 

  • Harris, H., Watkins, J. F., Ford, C. E., and Schoefl, G. I., 1966, Artifical heterokaryons of animal cells from different species, J. Cell Sci. 1: 1.

    Google Scholar 

  • Heywood, S. M., and Kennedy, D. S., 1976, Translational control in embryonic musde, Pro. Nucleic Acid Res. 19: 477.

    Article  Google Scholar 

  • Heywood, S. M., and Nwagu, M., 1969, Partial characterization of presumptive myosin messenger ribonucleic acid, Biochemistry 8: 3839.

    Article  Google Scholar 

  • Hnik, P., 1962, Rate of denervation of muscle atrophy, in: The Denervated Muscles ( E. Gutmann, ed.) pp. 341–375, Publishing House of the Czechoslovakian Academy of Sciences, Prague.

    Google Scholar 

  • Hnik, P., Jirmanovâ, J., Vyklicky, L., and Zelenâ, J., 1967, Fast and slow muscles of the chick after nerve cross-union, J. Physiol. 193: 309.

    Google Scholar 

  • Hnik, P., Mackova, E. V., Syrovy, I., Holas, M., and Krishna-Reddy, V., 1974, Contractile properties of musile undergoing “compensatory” hypertrophy and its increased susceptibility to denervation and reflex atrophy, Pfluëgers Arch. 349: 171.

    Article  Google Scholar 

  • Hoh, J. F. Y., 1978, Light chain distribution of chicken skeletal muscle myosin isoenzymes, FEBS LETT. 90: 297.

    Article  Google Scholar 

  • Hoh, J. F. Y., 1979, Developmental changes in chicken skeletal myosin isoenzymes, FEBS LETT. 98: 267.

    Article  Google Scholar 

  • Hoh, J. F. Y., and Yeoh, G. P. S., 1979, Rabbit skeletal myosin isoenzymes from fetal, fast-twitch and slow-twitch muscles, Nature (London) 280: 321.

    Article  Google Scholar 

  • Hoh, J. F. Y., McGrath, P. A., and Hale, P. T., 1978, Electrophoretic analysis of multiple forms of rat cardiac myosin: Effects of hypophysectomy and thyroxine replacement, J. Mol. Cell. Cardiol. 10: 1053.

    Article  Google Scholar 

  • Hoh, J. F. Y., Yeoh, G. P. S., Thomas, M A. W., and Higginbottom, L., 1979, Structural differences in the heavy chains of rat ventricular myosin isoenzymes, FEBS LETT. 97: 330.

    Article  Google Scholar 

  • Holtzer, H., 1970, Myogenesis, in: Cell Differentiation ( O. Schjeide, ed.), pp. 476–503, Van Nostrand Reinhold, New York.

    Google Scholar 

  • Holtzer, H., Marshal, T. M., and Finck, H., 1957, An analysis of myogenesis by the use of fluorescent antimyosin, J. Biophys. Biochem. Cytol. 3: 705.

    Article  Google Scholar 

  • Holtzer, H., Rubenstein, N., Dienstman, S., Chi, J., Biehl, J., and Somlye, A., 1974, Perpective in myogenesis, Biochimie 56: 1575.

    Article  Google Scholar 

  • Huszar, G., and Elizinga, M., 1972, Homologous methylated and non-methylated histidine peptides in skeletal and cardiac myosin, J. Biol. Chem. 247: 745.

    Google Scholar 

  • Ianuzzo, C. D., Gollnick, P. D., and Armstrong, R. B., 1976, Compensatory adaptation of skeletal muscle fiber types to a long-term functional overload, Life Sci. 19: 1517.

    Article  Google Scholar 

  • Jean, D. H., Albers, R. W., Guth, L., and Aron, H. J., 1975, Differences between the heavy chains of fast and slow muscle myosin, Exp. Neurol. 49: 750.

    Article  Google Scholar 

  • Johnson, L. S., 1974, Non-identical tropomyosin subunits in rat skeletal muscle, Biochim. Biophys. Acta 371: 219.

    Article  Google Scholar 

  • Kako, K. J., Varnai, K., and Beznak, M., 1972, RNA synthesis and RNA content of nuclei prepared from hearts during hypertrophy, Cardiovasc. Res. 6: 57.

    Article  Google Scholar 

  • Katzberg, A. A., Farmer, B. B., and Harris, R. A., 1977, Predominance of binucleation in isolated rat heart myocytes, Am. J. Anat. 149: 489.

    Article  Google Scholar 

  • Keller, L. R., and Emerson, C. P., 1980, Synthesis of adult myosin light chains by embryonic muscle cultures, Proc. Natl. Acad. Sci. U.S.A. 77: 1020.

    Article  Google Scholar 

  • Kelly, A. M., and Zacks, S. J., 1969a, The fine structure of motor endplate morphogenesis, J. Cell Biol. 42: 154.

    Article  Google Scholar 

  • Kelly, A. M., and Zacks, S. I., 1969b, The histogenesis of rat intercostal muscle, J. Cell Biol. 42: 135.

    Article  Google Scholar 

  • Konigsberg, I. R., 1963, Clonal analysis of myogenesis, Science 140: 1273.

    Article  Google Scholar 

  • Konigsberg, I. R., 1971, Diffusion-mediated control of myoblast fusion, Dev. Biol. 26: 133.

    Article  Google Scholar 

  • Krelhaus, W., Gibson, K. I., and Harris, P., 1975, The effects of hypertrophy, hypobaric conditions, and diet on myocardial ornithine decarboxylase activity, J. Mol. Cell. Cardiol. 7: 63.

    Article  Google Scholar 

  • Kun, E., Chang, A. C. Y., Sharma, M. L., Ferro, A. M., and Nitecki, D., 1976, Covalent modification of proteins by metabolites of NAD+, Proc. Natl. Acad. Sci. U.S.A. 73: 3131.

    Article  Google Scholar 

  • Laurent, G. J., Sparrow, M. P., Bates, P. C., and Millward, D. J., 1978, Turnover of muscle protein in the fowl (Gallus domesticus), Biochem. J. 176: 393.

    Google Scholar 

  • Leger, J. J., Klotz, C., Cavaille, F., and Marotte, F., 1979, Structural differences between the heavy chains of myosin subfragment-1 from bovine, porcine and human hearts, FEBS LETT. 106: 157.

    Article  Google Scholar 

  • Lewis, W. G., and Smillie, L. B., 1980, The amino acid sequence of rabbit cardiac tropomyosin, J. Biol. Chem. 251: 6854.

    Google Scholar 

  • Li, J. B., and Goldberg, A. L., 1976, Effects of food deprivation on protein synthesis and degradation in rat skeletal muscles, Am. J. Physiol. 231: 441.

    Google Scholar 

  • Limas, C. J., and Chan-Stier, C., 1978, Myocardial chromatin activation in experimental hyperthyroidism in rats: Role of nuclear non-histone proteins, Circ. Res. 42: 311.

    Article  Google Scholar 

  • Lompre, A. M., Scwartz, K., d’Albis, A., Lacombe, G., Van Thiem, N., and Swynghedauw, B., 1979, Myosin isoenzyme redistribution in chronic heart overload, Nature (London) 282: 105.

    Article  Google Scholar 

  • Lowey, S., and Risby, D., 1971, Light chains from fast and slow muscle myosins, Nature (London) 234: 81.

    Article  Google Scholar 

  • Mackovâ, E., and Hník, P., 1973, Compensatory muscle hypertrophy induced by tenotomy of synergists is not true working hypertrophy, Physiol. Bohemoslov. 22: 43.

    Google Scholar 

  • Manasek, F. J., 1968, Mitosis in developing cardiac muscle, J. Cell Biol. 37: 191.

    Article  Google Scholar 

  • Manasek, F. J., Burnside, M. B., and Watermann, R. E., 1972, Myocardial cell shape change as a mechanism of embryonic heart looping, Dev, Biol. 29: 349.

    Article  Google Scholar 

  • Manasek, F. J., Kulikowski, R., and Fitzpatrick, L., 1978, Cytodifferentiation: A causal antecedant of looping, Birth Defects 14: 161.

    Google Scholar 

  • Markert, C. L., 1975, Biology of isozymes, in Isozymes, Vol. 1 ( C. L. Markert, ed.), pp. 1–9, Academic Press, New York.

    Chapter  Google Scholar 

  • Marston, S. B., and Taylor, E. W., 1980, Comparison of the myosin and actomyosin ATPase mechanisms of the four types of vertebrate muscles, J. Mol. Biol. 139: 573.

    Article  Google Scholar 

  • Masaki, T., 1974, Immunochemical comparison of myosin from chicken cardiac, fast white, slow red, and smooth muscle, J. Biochem. 76: 441.

    Google Scholar 

  • Masaki, T., and Yoshizaki, C., 1974, Differentiation of myosin in chick embryos, J. Biochem. 76: 123.

    Google Scholar 

  • Mauro, A., 1961, Satellite cell of skeletal muscle fiber, J. Biophys. Biochem. Cytol. 9: 493.

    Article  Google Scholar 

  • Mommaerts, W., Seraydarian, K., Suh, M., Kean, C., and Buller, A., 1977, The conversion of some biochemical properties of mammalian skeletal muscles following cross-reinnervation, Exp. Neurol. 55: 637.

    Article  Google Scholar 

  • Morgan, H. E., and Wildenthal, K., 1980, Protein turnover in heart and skeletal muscle (symposium), Fed. Proc. Fed. Am. Soc. Exp. Biol. 39: 7.

    Google Scholar 

  • Morkin, E., 1979, Stimulation of cardiac myosin adenosine triphosphate in thyrotoxicosis, Circ. Res. 44: 1.

    Article  Google Scholar 

  • Moss, F. P., and Leblond, C. P., 1971, Satellite cells as the source of nuclei in muscles of growing rats, Anat. Rec. 170: 421.

    Article  Google Scholar 

  • Nair, K. G., Cutilletta, A. F., Zak, R., Koide, T., and Rabinowitz, M., 1968, Biochemical correlates of cardiac hypertrophy: Experimental model: Changes in heart weight, RNA content, and nuclear RNA polymerase activity, Circ. Res. 23: 451.

    Article  Google Scholar 

  • Neffgen, J. F., and Korecky, B., 1972, Cellular hyperplasia and hypertrophy in cardiomegalies induced by anemia in young and adult rats, Circ. Res. 30: 104.

    Article  Google Scholar 

  • Okazaki, K., and Holtzer, H., 1966, Myogenesis: Fusion, myosin synthesis, and the mitotic cycle, Proc. Natl. Acad. Sci. U.S.A. 56: 1484.

    Article  Google Scholar 

  • O’Neil, M. C., and Stockdale, F. E., 1972, A kinetic analysis of myogenesis in vitro, J. Cell Biol. 52: 52.

    Article  Google Scholar 

  • Paterson, B., and Strohman, R. C., 1972, Myosin synthesis in cultures of differentiating chicken embryo skeletal muscle, Dev. Biol. 29: 113.

    Article  Google Scholar 

  • Patrick, J., Heinemann, S., Lindstrom, J., Schubert, D., and Steinbach, J., 1972, Appearance of acetylcholine receptors during differentiation of a myogenic cell line, Proc. Natl. Acad. Sci. U.S.A. 69: 2762.

    Article  Google Scholar 

  • Pelloni-Müller, G., Ermini, M., Jenny, E., 1976, Myosin light chains of developing fast and slow rabbit skeletal muscle, FEBS LETT. 67: 68.

    Article  Google Scholar 

  • Perry, S. V., 1974, Variation in the contractile and regulatory proteins of the myofibril with muscle type, in: Exploratory Concepts in Muscular Dystrophy, Vol. II ( A. T. Milhorat, ed.), pp. 319–328, Excerpta Medica, Amsterdam.

    Google Scholar 

  • Perry, S. V., and Grand, J. A., 1979, Mechanisms of contraction, Br. Med. Bull. 35: 219.

    Google Scholar 

  • Pette, D., and Schnez, U., 1977a, Coexistence of fast and slow type myosin light chains in single muscle fibers during transformation as induced by long term stimulation, FEBS LETT. 83: 128.

    Article  Google Scholar 

  • Pette, D., and Schnez, U., 1977b, Myosin light chain patterns of individual fast and slow-twitch fibres of rabbit muscles, Histochemistry 54: 97.

    Article  Google Scholar 

  • Pette, D., Smith, M. E., Staudte, H. W., and Vrbovâ, G., 1973, Effects of long-term electrical stimulation on some contractile and metabolic characteristics of fast rabbit muscles, Pflüegers Arch. 388: 257.

    Article  Google Scholar 

  • Pette, D., Muller, W., Leisner, E., and Vrbovâ, G., 1976, Time dependent effects on contractile properties, fibre populations, myosin light chains and enzymes of energy metabolism in intermittenetly and continuously stimulated fast twitch muscles of the rabbit, Pflüegers Arch. 364: 103.

    Article  Google Scholar 

  • Pluskal, M. G. and Pennington, R. J., 1976, Protein synthesis by ribosomes from normal and denervated red and white muscles, Exp. Neurol. 51: 574.

    Article  Google Scholar 

  • Price, K. M., Cummins, P., and Littler, W. A., 1979, Atrial and ventricular human myosin during development, J. Mol. Cell. Cardiol. 11: 47.

    Article  Google Scholar 

  • Redfern, P. A., 1970, Neuromuscular transmission in newborn rats, J. Physiol. (London) 209: 701.

    Google Scholar 

  • Robbins, J., and Heywood, S. M., 1978, Quantification of myosin heavy-chain mRNA during myogenesis, Eur. J. Biochem. 82: 601.

    Article  Google Scholar 

  • Rowe, R. W. D., 1968, Effect of low nutrition on size of striated muscle fibers in the mouse, J. Exp. Zool. 167: 353.

    Article  Google Scholar 

  • Rowe, R. W. D., and Goldspink, G., 1969, Muscle fiber growth in five different muscles in both sexes of mice. II. Dystrophic mice, J. Anat. 104: 531.

    Google Scholar 

  • Roy, R. K., Potter, J. D., and Sarkar, S. 1976, Characterization of the regulatory complex of chick embryonic muscles: Polymorphism of tropomyosin in adult and embryonic fibers, Biochem. Biophys. Res. Commun. 70: 28.

    Article  Google Scholar 

  • Roy, R. K., Stréter, F. A., and Sarkar, S., 1979, Changes in tropomyosin subunits and myosin light chains during development of chicken and rabbit striated muscles, Dev. Biol. 69: 15.

    Article  Google Scholar 

  • Rubinstein, N. A., and Holtzer, H., 1979, Fast and slow muscles in tissue culture synthesise only fast myosin, Nature (London) 280: 323.

    Article  Google Scholar 

  • Rubinstein, N. A., and Kelly, A. M., 1978, Myogenic and neurogenic contributions to the development of fast and slow twitch muscles in rat, Dev. Biol. 62: 473.

    Article  Google Scholar 

  • Rubinstein, N., Pepe, F., and Holtzer, H., 1977, Myosin types during the development of embryonic chicken fast and slow muscles, Proc. Natl. Acad. Sci. U.S.A. 74: 4524.

    Article  Google Scholar 

  • Rubinstein, N. A., Mabuchi, K., Pepe, F., Salmons, S., Gergely, J., and Sréter, F., 1978, Use of type-specific antimyosins to demonstrate the transformation of individual fibers in chronically stimulated rabbit fast muscles, J. Cell Biol. 79: 252.

    Article  Google Scholar 

  • Rushbrook, J. I., and Stracher, A., 1979, Comparison of adult, embryonic, and dystrophic myosin heavy chains from chicken muscle by sodium dodecyl sulfate polyacrylamide gel electrophoresis and peptide mapping, Proc. Natl. Acad. Sci. U.S.A. 76: 4331.

    Article  Google Scholar 

  • Russel, D. N., Shiverick, K. T., Hamrell, B. B., and Alpert, N. R., 1971, Polyamine synthesis during initial phases of stress-induced cardiac hypertrophy, Am. J. Physiol. 221: 1287.

    Google Scholar 

  • Salmons, S., and Sréter, F. A., 1976, Significance of impulse activity in the transformation of skeletal muscle type, Nature (London) 263: 30.

    Article  Google Scholar 

  • Sarkar, S., and Cooke, P. H., 1970, In vitro synthesis of light and heavy polypeptide chains in myosin, Biochem. Biophys. Res. Commun. 41: 918.

    Article  Google Scholar 

  • Sarkar, S., Sréter, F. A., and Gergely, J., 1971, Light chains of myosins from white, red, and cardiac muscles, Proc. Natl. Acad. Sci. U.S.A. 68: 946.

    Article  Google Scholar 

  • Sarkar, S., Mukherjee, S. P., Sutton, A., Mondal, H., and Chen, V., 1973, Isolation of messenger RNA for myosin heavy chain, Prep. Biochem. 3: 583.

    Article  Google Scholar 

  • Sasaki, R., Morishita, T., and Yamagata, S., 1968, Mitosis of heart muscle cells in normal rats, Tohoku, J. Exp. Med. 96: 405.

    Article  Google Scholar 

  • Shiverick, K. T., Hamrell, B. B., and Alpert, N. R., 1976, Structural and functional properties of myosin associated with the compensatory cardiac hypertrophy in the rabbit, J. Mol. Cell. Cardiol. 8: 837.

    Article  Google Scholar 

  • Short, F. A., 1969, Protein synthesis by red and white muscles in vitro: Effect of insulin and animal age, Am. J. Physiol. 217: 307.

    Google Scholar 

  • Sobel, B. L., and Kaufman, S., 1970, Enhanced RNA polymerase activity in skeletal muscle undergoing hypertrophy, Arch. Biochem. Biophys. 137: 469.

    Article  Google Scholar 

  • Sréter, F. A., Seidel, J. C., and Gergely, J., 1966, Studies on myosin from red and white skeletal muscles of the rabbit. 1. Adenosine triphosphatase activity, J. Biol. Chem. 241: 5772.

    Google Scholar 

  • Sréter, F. A., Holtzer, S., Gergely, J., and Holtzer, H., 1972, Some properties of embryonic myosin, J. Cell Biol. 55: 586.

    Article  Google Scholar 

  • Sréter, F. A., Gergely, J., Salmons, S., and Romanul, F., 1973, Synthesis by fast muscle of myosin light chains characteristic of slow muscle in response to long-term stimulation, Nature (London) New Biol. 241: 17.

    Google Scholar 

  • Sréter, F. A., Balint, M., and Gergely, J., 1975a, Structural and functional changes of myosin during development: Comparison with adult fast, slow, and cardiac myosin, Dev. Biol. 46: 317.

    Article  Google Scholar 

  • Sréter, F. A., Elizinge, M., Mabuchi, K., Salmons, S., and Luff, A., 1975b, The N-methylhistidine content of myosin in stimulated and cross-reinnervated skeletal muscle of the rabbit, FEBS LETT. 57: 107.

    Article  Google Scholar 

  • Sréter, F. A., Luff, A., and Gergely, J., 1975, Effect of cross-innervation on physiological parameters and on properties of myosin and sarcoplasmic reticulum of fast and slow muscles of the rabbit, J. Gen. Physiol. 66: 811.

    Article  Google Scholar 

  • Stockdale, F. E., 1970, Changing levels of DNA polymerase activity during the development of skeletal muscle tissue in vivo, Dev. Biol. 21: 462.

    Article  Google Scholar 

  • Stockdale, F. E., and Holtzer, H., 1961, DNA synthesis and myogenesis, Exp. Cell Res. 24: 508.

    Article  Google Scholar 

  • Stockdale, F. E., and O’Neill, M. C., 1972, Repair DNA synthesis in differentiated embryonic muscle cells, J. Cell Biol. 52: 589.

    Article  Google Scholar 

  • Strehler, B. L., Konigsberg, I. R., and Kelly, F. E., 1963, Ploidy of myotube nuclei developing in vitro as determined with a recording double-beam micro-spectrophotometer, Exp. Cell Res. 32: 232.

    Article  Google Scholar 

  • Syrovÿ, I., 1976, The relationship between ATPase activity and light chains of myosin in developing, adult and denervated muscles of several animal species, Physiol. Bohemoslov. 25: 295.

    Google Scholar 

  • Syrovÿ, I., and Zelenâ, J., 1975, The onset and progress of transformation of avian slow into fast muscles under the neural influence, Pflüegers Arch. 360: 121.

    Article  Google Scholar 

  • Syska, H., Perry, S. V., and Trayer, I. P., 1974, A new method of preparation of tropopin I (inhibitory protein) using affinity chromatography: Evidence for three different forms of troponin I in striated muscle, FEBS LETT. 40: 953.

    Article  Google Scholar 

  • Thomas, L. L., and Alpert, N. R., 1977, Functio, integrity of the SHl site in myosin from hypertrophied myocardium, Biochim. Biophys. Acta 481: 680.

    Article  Google Scholar 

  • Turto, H., 1977, Experimental cardiac hypertrophy and the synthesis of poly(A)-containing RNA and of myocardial proteins in the heart: The effect of digitoxin treatment, Acta Physiol. Scand. 101: 114.

    Article  Google Scholar 

  • Umeda, P., Zak, R., and Rabinowitz, M., 1980, Purification of messenger RNA for fast and slow myosin heavy chains by indirect immunoprecipitation of polysomes from embryonic chick skeletal muscle, Biochemistry 19: 1955.

    Article  Google Scholar 

  • Vandekerchkove, J., and Weber, K., 1978, Mammalian cytoplasmic actins are the products of at least two genes and differ in primary structure in at least 25 identified positions from skeletal muscle actins, Proc. Natl. Acad. Sci. U.S.A. 75: 1106.

    Article  Google Scholar 

  • Wahrmann, J. P., Drugeon, G., Delain, E., and Delain, D., 1976, Gene expression during the differentiation of myogenic cells of the L3 line, Biochimie 58: 551.

    Article  Google Scholar 

  • Weeds, A. G., and Burridge, K., 1975, Myosin from cross-reinnervated cat muscles: Evidence for reciprocal transformation of heavy chains, FEBS LETT. 57: 203.

    Article  Google Scholar 

  • Weeds, A. G., Trentham, D. R., Kean, C. J., and Buller, A. J., 1974, Myosin from crossreinnervated cat muscles, Nature (London) 247: 135.

    Article  Google Scholar 

  • Weeds, A. G., Hall, R., and Spurway, N. C. S., 1975, Characterization of myosin light chains from histochemically identified fibres of rabbit psoas muscle, FEBS LETT. 49: 320.

    Article  Google Scholar 

  • Whalen, R. G., and Sell, S. M., 1980, Myosin from fetal hearts contains the skeletal muscle embryonic light chain, Nature (London) 286: 731.

    Article  Google Scholar 

  • Whalen, R. G., Butler-Browne, G. S., and Gros, F., 1976, Protein synthesis and actin heterogeneity in calf muscle cells in culture, Proc. Natl. Acad. Sci. U.S.A. 73: 2018.

    Article  Google Scholar 

  • Whalen, R. G., Butler-Browne, G. S., and Gros, F., 1978, Identification of a novel form of myosin light chain present in embryonic muscle tissue and cultured muscle cells, J. Mol. Biol. 126: 415.

    Article  Google Scholar 

  • Whalen, R. G., Schwartz, K., Bouveret, P., Sell, S., and Gros, F., 1979, Contractile protein isozymes in muscle development: Identification of an embryonic form of myosin heavy chain, Proc. Natl. Acad. Sci. U.S.A. 76: 5197.

    Article  Google Scholar 

  • Wikman-Coffelt, J., and Srivastava, S., 1979, Differences in atrial and ventricular myosin light chains, FEBS LETT. 106: 207.

    Article  Google Scholar 

  • Wilkinson, J. M., 1980, Troponin C from rabbit slow skeletal and cardiac muscles is the product of a single gene, Eur. J. Biochem. 103: 179.

    Article  Google Scholar 

  • Wilkinson, J. M., and Grand, R. J. A., 1978, Comparison of amino acid sequence of troponin I from different striated muscles, Nature (London) 271: 31.

    Article  Google Scholar 

  • Yaffe, D., and Dym, H., 1972, Gene expression during differentiation of contractile muscle fibers, Cold Spring Harbor Symp. Quant. Biol. 37: 543.

    Article  Google Scholar 

  • Yaffe, D., and Gershon, D., 1967, Multinucleated muscle fibres: Induction of DNA synthesis and mitosis by polyoma virus infection, Nature (London) 215: 421.

    Article  Google Scholar 

  • Yavich, M. P., Lerman, M. I., and Meerson, F. Z., 1976, Incorporation in vitro of labeled amino acids into myocardial ribosomes in early and late stages of compensatory hyperfunctioning of heart, Biokhimiya 41: 2110.

    Google Scholar 

  • Zak, R., 1974, Development and proliferative capacity of cardiac muscle cells, Circ. Res. 3435: 11–17.

    Google Scholar 

  • Zak, R., and Rabinowitz, M., 1979, Molecular aspects of cardiac hypertrophy, Annu. Rev. Physiol. 41: 539.

    Article  Google Scholar 

  • Zak, R., Kizu, A., and Bugaisky, L., 1979, Cardiac hypertrophy: Its characteristics as a growth process, Am. J. Cardiol. 44: 941.

    Article  Google Scholar 

  • Zhinkin, L. N., and Andreeva, L. F., 1963, DNA synthesis and nuclear reproduction during embryonic development and regeneration of muscle tissue, J. Embryol. Exp. Morphol. 2: 353.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Plenum Press, New York

About this chapter

Cite this chapter

Zak, R. (1981). Contractile Function as a Determinant of Muscle Growth. In: Dowben, R.M., Shay, J.W. (eds) Cell and Muscle Motility. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-8196-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-8196-9_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-8198-3

  • Online ISBN: 978-1-4684-8196-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics