Skip to main content

Is Analytically-Defined Chemical Speciation the Answer We Need to Understand Trace Element Transfer Along a Trophic Chain?

  • Chapter
Trace Element Speciation in Surface Waters and Its Ecological Implications

Part of the book series: NATO Conference Series ((E,volume 6))

Abstract

In the last few years, a large amount of research on trace element emission and dispersion through aquatic ecosystems has underlined the need for more detailed studies on the function and role of these elements in the various ecological compartments. Following the well-known cases of injuries to man from Hg and Cd, all “heavy metals” and related trace elements have been regarded as powerful toxicants, potentially dangerous even for human health. Still more recently, with the advent of an ever increasing mass of data, it has been recognized that the impact of these elements on aquatic environments, with regard to undesirable effects on aquatic life, is mostly controlled by their physico-chemical status rather than by their “total” concentration in water.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amiard-Triquet, C. and Saas, A., 1979, Modalités de la contamination de deux chaînes trophiques dulçaquicoles par le cobalt 60. II. Contamination simultanée des organismes par l’eau et la nourriture, Water Air Soil Pollut., 12: 141.

    Google Scholar 

  • Aoyama, I., Inoue, Y. and Inoue, Y., 1978, Experimental study on the concentration process of trace element through a food chain from the viewpoint of nutrition ecology, Water Res., 12: 831.

    Article  CAS  Google Scholar 

  • Baudo, R., 1980, Chemical speciation of trace elements in the aquatic environments: a literature review, Mem. Ist. Ital. Idrobiol., 39: in press.

    Google Scholar 

  • Boudou, A., Delarche, A., Ribeyre, F. and Marty, R., 1979, Bioaccu-mulation and bioamplification of mercury compounds in a second level consumer, Gambusia affinis. Temperature effects, Bull. Environ. Contam. Toxicol., 22: 813.

    Google Scholar 

  • Bourg, A., 1979, Spéciation chimique des métaux traces dans les syst-èmes aquatiques. Importance de l’interface solide-solution, J. Français Hydrol., 10: 159.

    Google Scholar 

  • Brezonik, P.L., 1974, Analysis and speciation of trace metals in water supplies, in: “Aqueous-Environmental Chemistry of Metals”

    Google Scholar 

  • A.J. Rubin, ed., Ann Arbor Science Publ., Ann Arbor, Michigan.

    Google Scholar 

  • Brooks, R.R. and Rumsby, H.G., 1965, The biogeochemistry of trace element uptake by some New Zealand bivalves, Limnol. Oceanogr., 10: 521.

    Google Scholar 

  • Brown, B.E., 1976, Observations on the tolerance of the isopod Asellus

    Google Scholar 

  • meridianus Rac. to copper and lead, Water Res., 10:555.

    Google Scholar 

  • Brown, B.E., 1977, Uptake of copper and lead by a metal-tolerant iso-pod Asellus meridianus Rac., Freshw. Biol., 7: 235.

    Google Scholar 

  • Buchanan, J.B., Brown, B.E., Coombs, T.L., Pirie, B.J.S. and Allen, J.A., 1980, The accumulation of ferric iron in the guts of some spatangoid echinoderms, J. Mar. Biol. Ass. U.K., 60: 631.

    Google Scholar 

  • Chau, Y.K., Wong, P.T.S., Bengert, G.A. and Kramar, 0., 1979, Deter-mination of tetraalkyllead compounds in water, sediments, and fish samples, Anal. Chem., 51: 186.

    Google Scholar 

  • Chau, Y.K., Wong, P.T.S., Kramar, O., Bengert, G.A., Cruz, R.B., Kin-rade, J.O., Lye, J. and van Loon, J.C., 1980, Occurrence of tetraalkyllead compounds in the aquatic environment, Bull. Environ. Contam. Toxicol., 24: 265.

    Google Scholar 

  • Chou, C.L., Uthe, J.F. and Zook, E.G., 1978, Polarographic studies

    Google Scholar 

  • on the nature of cadmium in scallop, oyster, and lobster, J. Fish. Res. Board Can., 35: 409.

    Google Scholar 

  • Curtis, E.H., Beauchamp, J.J. and Blaylock, B.G., 1977, Application of various mathematical models to data from the uptake of methyl mercury in bluegill sunfish ( Lepomis macrochirus),Ecol. Model. 3: 273.

    Google Scholar 

  • Dixon, D.G. and Sprague, J.B., 1981, Copper bioaccumulation and hepatoprotein synthesis during acclimation to copper by juvenile rainbow trout, Aquat. Toxicol., 1: 69.

    Google Scholar 

  • Ellgehausen, H., Guth, J.A. and Esser, H.O., 1980, Factors determining the bioaccumulation potential of pesticides in the individual compartments of aquatic food chains, Ecotoxicol. Environ. Safety, 4: 134.

    Google Scholar 

  • Evans, M.L., 1980, Copper accumulation in the crayfish ( Orconectes rusticus ), Bull. Environ. Contam. Toxicol., 24: 916.

    Google Scholar 

  • Fagerström, T., Kurtén, R. and Asell, B., 1975, Statistical parameters as criteria in model evaluation: kinetics of mercury accumulation in pike Esox lucius, Oikos, 26: 109.

    Article  Google Scholar 

  • Foley, R.E., Spotila, J.R., Giesy, J.P. and Wall, C.H., 1978, Arsenic concentrations in water and fish from Chautauqua Lake, New York, Env. Biol. Fish., 3: 361.

    Google Scholar 

  • Gächter, R. and Geiger, W., 1979, MELIMEX, an experimental heavy metal pollution study: Behaviour of heavy metals in an aquatic food chain, Schweiz. Z. Hydrol., 41: 277.

    Google Scholar 

  • George, S.G., Pirie, B.J.S. and Coombs, T.L., 1976, The kinetics of accumulation and excretion of ferric hydroxide in Mytilus edulis ( L.) and its distribution in the tissues, J. Exp. Mar. Biol. Ecol., 23: 71.

    Google Scholar 

  • George, S.G., Pirie, B.J.S., Cheyne, A.R., Coombs, T.L. and Grant, P.T., 1978, Detoxication of metals by marine bivalves: an ultra-structural study of the compartmentation of copper and zinc in the oyster, Mar. Biol., 45: 147.

    Google Scholar 

  • George, S.G. and Pirie, B.J.S., 1980, Metabolism of zinc in the mussel, Mytilus edulis (L.): A combined ultrastructural and biochemical study, J. Mar. Biol. Ass. U.K., 60: 575.

    Google Scholar 

  • Giesy, J.P., Bowling, J.W. and Kania, H.J., 1980, Cadmium and zinc accumulation and elimination by freshwater crayfish, Arch. Environ. Contam. Toxicol., 9: 683.

    Google Scholar 

  • Glandon, R.P. and McNabb, C.D., 1978, The uptake of boron by Lemna minor, Aquat. Bot., 4: 53.

    Google Scholar 

  • Gommes, R. and Muntau, H., 1975, La distribution de quelques métaux lourds (Zn, Cu, Cr, Ni, Mn, Co) dans la zone littorale des bassins sud et de Pallanza du lac Majeur, Mem. Ist. Ital. Idrobiol., 32: 245.

    Google Scholar 

  • Hall, A., 1980, Heavy metal co-tolerance in a copper-tolerant population of the marine fouling alga, Ectocarpus siliculosus ( Dillw.) Lyngbye, New Phytol., 85: 73.

    Google Scholar 

  • Hall, A., 1981, Copper accumulation in copper-tolerant and non-tolerant populations of the marine fouling alga, Ectocarpus siliculosus ( Dillw.) Lyngbye, Botanica Mar., 24: 223

    Google Scholar 

  • Harding, J.P.C. and Whitton, B.A., 1981, Accumulation of zinc, cad-mium and lead by field populations of Lemanea, Water Res., 15:301. Hercules, D.M., Cox, L.E., Onisick, S., Nichols, G.D. and Carver

    Google Scholar 

  • J.C., 1973, Electron spectroscopy (ESCA): use for trace analysis, Anal. Chem., 45: 1973.

    Google Scholar 

  • Heyraud, M. and Cherry, R.D., 1979, Polonium-210 and lead-210 in marine food chains, Mar. Biol., 52: 227.

    Google Scholar 

  • Hobden, D.J., 1969, Iron metabolism in Mytilus edulis. II. Uptake and distribution of radioactive iron, J. Mar. Biol. Ass. U.K., 49: 661.

    Google Scholar 

  • Horowitz, A. and Presley, B.J., 1977, Trace metal concentrations and partitioning in zooplankton, neuston, and benthos from the South Texas Outer Continental Shelf, Arch. Environ. Contam. Toxicol., 5: 241.

    Google Scholar 

  • Isensee, A.R., Kearney, P.C., Woolson, P.C., Jones, G.E. and Williams, V.P., 1973, Distribution of alkyl arsenicals in model ecosystem, Environ. Sci. Technol., 7: 841.

    Google Scholar 

  • Jernelöv, A. and Lann.,H., 1971, Mercury accumulation in food chains, Oikos, 22: 403.

    Article  Google Scholar 

  • Jorgensen, S.E., 1979, Modelling the distribution and effect of heavy metals in an aquatic ecosystem, Ecol. Model., 6: 199.

    Google Scholar 

  • Kimura, Y., Honda, Y. and Katsurayama, K., 1979, Comparative uptake and elimination of radiocobalt in organic complexed and ionic forms by mussel, Mytilisepta virgatus, J. Radiat. Res., 20: 291.

    Google Scholar 

  • Laties, G.G., 1959, Active transport of salt into plant tissue, Annu. Rev. Plant Physiol., 10: 87.

    Google Scholar 

  • Laube, V., Ramamoorthy, S. and Kushner, D.J., 1979, Mobilization and accumulation of sediment-bound heavy metals by algae, Bull. Environ. Contam. Toxicol., 21: 763.

    Google Scholar 

  • Leppard, G.G., Massalski, A. and Lean, D.R.S., 1977, Electron-opaque microscopic fibrils in lakes: their demonstration, their biological derivation and their potential significance in the redistribution of cations, Protoplasma, 92: 289.

    Article  CAS  Google Scholar 

  • Li, W.K.W., 1980, Cellular accumulation and distribution of cadmium

    Google Scholar 

  • in Isochrysis galbana during growth inhibition and recovery, J. Plankton Res., 2: 283.

    Google Scholar 

  • Luoma, S.N. and Jenne, E.A., 1976, Estimating bioavailability of sediment-bound trace metals with chemical extractants, in: “Trace Substances in Environmental Health - X”, D.D. Hemphill, ed., Univ. of Missouri Press, Columbia, Missouri.

    Google Scholar 

  • Martoja, M., Tue, V.T. and Elkam, B., 1980, Bioaccumulation du cuivre chez Littorina littorea (L.) (Gastéropode Prosobranche): signification physiologique et écologique, J. Exp. Mar. Biol. Ecol., 43: 251.

    Google Scholar 

  • McFarlane, G.A. and Franzin, W.G., 1980, An estimation of Cd, Cu and Hg concentrations in livers of northern pike, Esox lucius, and white sucker, Catostomus commersoni, from five lakes near a base metal smelter at Flin Flon, Manitoba, Can. J. Fish. Aquat. Sci., 37: 1573.

    Google Scholar 

  • Miramand, P., Guary, J.C. and Fowler, S.W., 1980, Vanadium transfer in the mussel Mytilus galloprovincialis, Mar. Biol., 56: 281.

    Google Scholar 

  • Miramand, P., Guary, J.C. and Fowler, S.W., 1981, Uptake, assimilation, and excretion of vanadium in the shrimp, Lysmata seticaudata (Risso), and the crab, Carcinus maenas ( L. ), J. Exp. Mar. Biol. Ecol., 49: 267.

    Google Scholar 

  • Neff, J.W., Foster, R.S. and Slowey, J.F., 1978, “Availability of Sediment-adsorbed Heavy Metals to Benthos with Particular Emphasis on Deposit-feeding in Fauna”, U.S. Dept. Comm. Natl. Tech. Inf. Service AD/A-061, 152: 286 pp.

    Google Scholar 

  • Norris, P.R. and Kelly, D.P., 1979, Accumulation of metals by bacteria and yeasts, Dev. Ind. Microbiol., 20: 299.

    Google Scholar 

  • Norstrom, R.J., McKinnon, A.E., deFreitas, A.S.W., 1976, A bioenergetics-based model for pollutant accumulation by fish. Simula-tion of PCB and methylmercury residue levels in Ottawa River yellow perch ( Perca flavescens ), J. Fish. Res. Board Can., 33: 248.

    Google Scholar 

  • Papadopoulou, C., Zafiropoulos, D., Hadjistelios, I., Vassilaki-Grimani, M.,and Yannopoulos, C., 1978, Trace elements in pelagic organisms and a pelagic foodchain of the Aegean Sea, IVes Journées Etud. Pollutions, Antalya, C.I.E.S.M., 231–232.

    Google Scholar 

  • Patrick, F.M. and Loutit, M.W., 1977, The uptake of heavy metals by epiphytic bacteria on Alisma plantago-aquatica, Water Res., 11: 699.

    Article  CAS  Google Scholar 

  • Phillips, D.J.H., 1977, The common mussel Mytilus edulis as an indicator of trace metals in Scandinavian waters. I. Zinc and cadmium, Mar. Biol., 43: 283.

    Google Scholar 

  • Phillips, G.R. and Russo, R.C., 1978, “Metal Bíoaccumulation in Fishes and Aquatic Invertebrates: A Literature Review”, (U.S.) EPA–600/3–78–103, 116 pp.

    Google Scholar 

  • Radoux,.D. and Bouquegneau, J.M., 1979, Uptake of mercuric chloride from sea water by Serranus cabrilla, Bull. Environ. Contam. Toxicol., 22: 771.

    Google Scholar 

  • Seip, K.L., 1979, A mathematical model for the uptake of heavy metals in benthic algae, Ecol. Model., 6: 183.

    Google Scholar 

  • Spear, P.A. and Pierce, R.C., 1979, “Copper in the Aquatic Environment: Chemistry, Distribution, and Toxicology”, Publ. Environ. Sec., Ottawa, Canada, No. NRCC 16454, 227 pp.

    Google Scholar 

  • Steinberg, C. and Herrmann, A., 1980, Utilization of Dissolved Metal Organic Compounds by Freshwater Microorganisms, Paper presented at 21st. SIL Congress, Kyoto, Japan, August, 1980.

    Google Scholar 

  • Stoeppler, M. and Brandt, K., 1979, Comparative studies on trace metal levels in marine biota. II. Trace metals in krill, krill products, and fish from the Antarctic Scotia Sea, Z. Lebensm. Unters. Forsch., 169: 95.

    Google Scholar 

  • Stoeppler, M. and Nürnberg, H.W., 1979, Comparative studies on trace metal levels in marine biota. III. Typical levels and accumulation of toxic trace metals in muscle tissue and organs of marine organisms from different European Seas, Ecotoxicol. Environ. Safety, 3: 335.

    Google Scholar 

  • Unlü, M.Y., 1979, Chemical transformation and flux of different forms of arsenic in the crab Carcinus maenas, Chemosphere, 5:269. Unlü, M.Y. and Fowler, S.W., 1979, Factors affecting the flux of arsenic through the mussel Mytilus galloprovincialis, Mar. Biol., 51: 209.

    Google Scholar 

  • Putte, I., Lubbers, J. and Kolar, Z., 1981, Effect of pH on uptake, tissue distribution and retention of hexavalent chromium in rainbow trout ( Salmo gairdneri ), Aquat. Toxicol., 1: 3.

    Google Scholar 

  • Loon, J.C., 1979, Metal speciation by Chromatography/Atomic spectrometry, Anal. Chem., 51: 1139A.

    Google Scholar 

  • Veith, G.D., DeFoe, D.L. and Bergstedt, B.V., 1979, Measuring and estimating the bioconcentration factor of chemicals in fish, J. Fish. Res. Board Can., 36: 1040.

    Google Scholar 

  • Heidemarie, K., 1979, Die Belastung von Wattenorganismen im ElbeAestuar durch Radionuklide: Versuche zur Kontamination von Nereis diversicolor 0.F. Müller mit Co-57, Arch. Hydrobiol., Suppl., 43: 265.

    Google Scholar 

  • Williams, D.R. and Giesy, J.P., 1978, Relative importance of food and water sources to cadmium uptake by Gambusia affinis ( Poeciliidae ), Environ. Res., 16: 326.

    Google Scholar 

  • Zitko, V. and Carson, W.G., 1976, A mechanism of the effects of water hardness on the lethality of heavy metals to fish, Chemosphere, 5: 299.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Plenum Press, New York

About this chapter

Cite this chapter

Baudo, R. (1983). Is Analytically-Defined Chemical Speciation the Answer We Need to Understand Trace Element Transfer Along a Trophic Chain?. In: Leppard, G.G. (eds) Trace Element Speciation in Surface Waters and Its Ecological Implications. NATO Conference Series, vol 6. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-8234-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-8234-8_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-8236-2

  • Online ISBN: 978-1-4684-8234-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics