Skip to main content

Neuromodulatory Actions of Dopamine and Cholecystokinin in the Ventral Striatum

  • Chapter
The Basal Forebrain

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 295))

  • 222 Accesses

Abstract

Electrophysiological investigations of the cellular actions of dopamine had focused in the past on its direct action on cell bodies of the postsynaptic neuron, assuming dopamine to be a neuromediating transmitter. Recent evidence suggests, however, that while dopamine undoubtedly has actions on the cell bodies of postsynaptic neurons, it may also have an important presynaptic neuromodulatory action on non-dopaminergic inputs to the ventral striatum (see Yim and Mogenson, 1986). There is also evidence that peptides such as cholecystokinin which coexists with dopamine in a subpopulation of the mesolimbic dopamine neurons may in turn modulate the neuromodulatory action of dopamine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abercrombie, E.D., and Jacobs, B.L., 1985, Dopaminergic modulation of sensory responses of striatal neurons: single unit studies. Brain Res., 358:27–33.

    Article  PubMed  CAS  Google Scholar 

  • Altar, C.A., and Boyar, W.C., 1989, Brain CCK-8 receptors mediate the suppression of dopamine release by cholecystokinin. Brain Res., 483:321–326.

    Article  PubMed  CAS  Google Scholar 

  • Arneric, S.P., and Reis, D.J., 1986, Somatostatin and cholecystokinin octapeptide differentially modulate the release of acetylcholine from caudate nucleus but not cerebral cortex: role of dopamine receptor activation, Brain Res., 374:153–161.

    Article  PubMed  CAS  Google Scholar 

  • Bergstrom, D.A., and Walters, J.R., 1984, Dopamine attenuates the effects of GABA on single unit activity in the globus pallidus. Brain Res., 310:23–33.

    Article  PubMed  CAS  Google Scholar 

  • Bernardi, G., Marciani, M.G., Morocutti, C., Pavone, F., and Stanzione, P., 1978, The action of dopamine on rat caudate neurones intracellularly recorded, Neurosci.Lett., 8:235–240.

    Article  PubMed  CAS  Google Scholar 

  • Chiodo, L.A., and Bunney, B.S., 1983, Proglumide: Selective anatagonism of excitatory effects of cholecystokinin in central nervous system. Science, 219:1449–1451.

    Article  PubMed  CAS  Google Scholar 

  • Chiodo, L.A., Freeman, A.S., and Bunney, B.S., 1987, Electrophysiological studies on the specificity of the cholecystokinin antagonist pro- glumide. Brain Res., 410:205–211.

    Article  PubMed  CAS  Google Scholar 

  • Cohen, S.L., Knight, M., Tamminga, C.A., and Chase, T.N., 1982, Cholecystokinin effects on conditioned avoidance behaviour, stereotypy and catalepsy, Eur.J.Pharmacol., 83:213–222.

    Article  PubMed  CAS  Google Scholar 

  • Crawley, J.N., 1988, Modulation of mesolimbic dopaminergic behaviors by cholecystokinin, Ann.N.Y.Acad.Sei., 537:380–396.

    Article  CAS  Google Scholar 

  • Crawley, J.N., Stivers, J.A., Blumstein, L.K., and Paul, S.M., 1985, Cholecystokinin potentiates dopamine-mediated behaviors: evidence for modulation specific to a site of coexistence, J.Neurosci., 5:1972–1983.

    PubMed  CAS  Google Scholar 

  • DeFrance, J.F., Sikes, R.W., and Chronister, R.B., 1984, Effects of CCK-8 in the nucleus accumbens. Peptides, 5:1–6.

    Article  PubMed  CAS  Google Scholar 

  • Dodd, J., and Kelly, J.S., 1981, The actions of cholecystokinin and related peptides on pyramidal neurons of the mammalian hippocampus. Brain Res., 205:337–350.

    Article  PubMed  CAS  Google Scholar 

  • Ferron, A., Thierry, A.M., Le-Douarin, C., and Glowinski, J., 1984, Inhibitory influence of the mesocortical dopaminergic system on spontaneous activity or excitatory response induced from the thalamic mediodorsal nucleus in the rat medial prefrontal cortex. Brain Res., 302:257–265.

    Article  PubMed  CAS  Google Scholar 

  • Freeman, A.S., and Chiodo, L.A., 1988, Electrophysiological effects of cholecystokinin octapeptide on identified rat nigrostriatal dopaminergic neurons. Brain Res., 439:266–274.

    Article  PubMed  CAS  Google Scholar 

  • Fuxe, K., Andersson, K., Locatelli, V., Agnati, L.F., Hokfelt, T., Skirboll, L., and Mutt, V., 1980, Cholecystokinin peptides produce marked reduction of dopamine turnover in discrete areas in the rat brain following intraventricular injection, Eur. J. Pharmacol., 67:325–331.

    Article  Google Scholar 

  • Herrling, P.L., and Hull, C.D., 1980, lontophoretically applied dopamine depolarizes and hyperpolarizes the membrane of cat caudate neurons. Brain Res., 192:441–462.

    Article  PubMed  CAS  Google Scholar 

  • Hirata, K., Yim, C.Y., and Mogenson, G.J., 1984, Excitatory input from sensory motor cortex to neostriatum and its modification by conditioning stimulation of the substantia nigra. Brain Res., 321:1–8.

    Article  PubMed  CAS  Google Scholar 

  • Hokfelt, T., Rehfeld, J., Skirboll, L., Ivemark, B., Goldstein, M., and Marley, K., 1980, Evidence for coexistence of dopamine and CCK in mesolimbic neurons. Nature, 285:476–478.

    Article  PubMed  CAS  Google Scholar 

  • Hokfelt, T., Skirboll, L., Rehfeld, J., Goldstein, M., Marley, K., and Dann, O., 1980, A subpopulation of mesencephalic dopamine neurons projecting to limbic areas contains a cholecystokinin-like peptide: evidence from immunohistochemistry combined with retrograde tracing, Neuroscience, 5:2093–2124.

    Article  PubMed  CAS  Google Scholar 

  • Hutchison, J.B., Strupish, J., and Nahorski, S.R., 1986, Release of endogenous dopamine and cholecystokinin from rat striatal slices: effects of amphetamine and dopamine antagonists. Brain Res., 370:310–314.

    Article  PubMed  CAS  Google Scholar 

  • Ishibashi, S., Oomura, Y., Okajima, T., and Shibata, S., 1979, Cholecystokinin, motilin and secretin effects on the central nervous system, Physiol.Behav., 23:401–403.

    Article  PubMed  CAS  Google Scholar 

  • Kaczmarek, L.K. and Levitan, I.B. 1987, Neuromodulation, Oxford University Press, New York.

    Google Scholar 

  • Katsuura, G., and Itch, S., 1982, Sedative action of cholecystokinin octapeptide on behavioral excitation by thyrotropin releasing hormone and methamphetamine in the rat, Jpn. J. Physiol., 32:83–91.

    Article  PubMed  CAS  Google Scholar 

  • Kitai, S.T., Sugimori, M., and Kocsis, J.D., 1976, Excitatory nature of dopamine in the nigro-caudate pathway. Brain Res., 24:351–363.

    CAS  Google Scholar 

  • Kupfermann, I., 1979, Modulatory actions of neurotransmitters, Ann. Rev. Neurosci., 2:447–465.

    Article  PubMed  CAS  Google Scholar 

  • Lane, R.F., Blaha, C.D., and Phillips, A.G., 1986, In vivo electrochemical analysis of cholecystokinin-induced inhibition of dopamine release in the nucleus accumbens. Brain Res., 397:200–204.

    Article  PubMed  CAS  Google Scholar 

  • Markstein, R., and Hokfelt, T., 1984, Effect of cholecystokinin-octa- peptide on dopamine release from slices of cat caudate nucleus, J. Neuro. sci., 4:570–575.

    CAS  Google Scholar 

  • Martin, J.R., Beinfeld, M.C., and Wang, R.Y., 1986, Modulation of chole- cystokinin release from posterior nucleus accumbens by D-2 dopamine receptor. Brain Res., 397:253–258.

    Article  PubMed  CAS  Google Scholar 

  • Mercuri, N., Bernardi, G., Calabresi, P., Cotugno, A., Levi, G., and Stanzione, P., 1985, Dopamine decreases cell excitability in rat striatal neurons by pre- and postsynaptic mechanisms. Brain Res., 358:110–121.

    Article  PubMed  CAS  Google Scholar 

  • Meyer, D.K., and Krauss, J., 1983, Dopamine modulates cholecystokinin release in neostriatum. Nature, 301:338–340.

    Article  PubMed  CAS  Google Scholar 

  • Mogenson, G.J., 1977, The Neurobiology of Behavior: An Introduction, Erlbaum.,Hillsdale., 1:

    Google Scholar 

  • Mogenson, G.J., 1987, Limbic-Motor Integration, in: “Progress in Psychobiology and Physiological Psychology,” A.N. Epstein, ed., Academic Press Inc., New York, p. 117–170.

    Google Scholar 

  • Morin, M.P., De Marchi, P., Champagnat, J., Vanderhaeghen, J.J., Rossier, J., and Denavit-Saubie, M., 1983, Inhibitory effect of cholecystokinin octapeptide on neurons in the nucleus tractus solitarius. Brain Res., 265:333–338.

    Article  PubMed  CAS  Google Scholar 

  • Murphy, R.B., and Schuster, D.I., 1982, Modulation of -dopamine binding by cholecystokinin octapeptide (CCK-8), Peptides, 3:539–543.

    Article  PubMed  CAS  Google Scholar 

  • Phillips, A.G., Blaha, C.D., Fibiger, H.C., and Lane, R.F., 1988, Interactions between mesolimbic dopamine neurons, cholecystokinin, and neurotensin: evidence using in vivo voltammetry, Ann. N. Y. Acad. Sci., 537:347–361.

    Article  PubMed  CAS  Google Scholar 

  • Phillips, A.G., Jakubovic, A., and Fibiger, H.C., 1987, Increased in vivo tyrosine hydroxylase activity in rat telencephalon produced by self- stimulation of the ventral tegmental area. Brain Res., 402:109–116.

    Article  PubMed  CAS  Google Scholar 

  • Phillis, J.W., and Kirpatrick, J.R., 1980, The actions of motilin, cholecystokinin, somatostatin, vasoactive interstinal peptide, and other peptides on rat cerebral cortical neurons. Can. J. Phvsiol., 58:612–623.

    Article  CAS  Google Scholar 

  • Pijnenburg, A.J.J., Woodruff, G.N., and Van Rossum, J.M., 1973, Ergometrine-induced locomotor activity following intracerebral injection into the nucleus accumbens. Brain Res., 59:289–302.

    Article  PubMed  CAS  Google Scholar 

  • Robinson, E., 1963, Effect of amygdalectomy on fear-motivated behaviour of rats, J.Comp.Phvsiol.Psychol., 56:814–820.

    Article  CAS  Google Scholar 

  • Schneider, L.H., Alpert, J.E., and Iversen, S.D., 1983, CCK-8 modulation of mesolimbic dopamine: antagonism of amphetamine-stimulated behaviors, Peptides, 4:749–753.

    Article  PubMed  CAS  Google Scholar 

  • Skirboll, L.R., Grace, A.A., Hommer, D.W., Rehfeld, J., Goldstein, M., Hokfelt, T., and Bunney, B.S., 1981, Peptide-monoamine coexistence: studies of the actions of cholecystokinin-like peptides on the electrical activity of midbrain dopamine neurons, Neuroscience, 6:2111–2124.

    Article  PubMed  CAS  Google Scholar 

  • Takeda, Y., Kamiya, Y., Honda, K., Takano, Y., and Kamiya, H., 1986, Effect of injection of CCK-8 into the nucleus caudatus on the behavior of rats, Jpn. J. Pharmacol., 40:569–575.

    Article  PubMed  CAS  Google Scholar 

  • Thierry, A.M., Mantz, J., Milla, C., and Glowinski, J., 1988, Influence of the mesocortical/prefrontal dopamine neurons on their target cells, Ann. N.Y. Acad. Sci., 537:101–111.

    Article  PubMed  CAS  Google Scholar 

  • Ursin, H., and Kaada, B.R., 1960, Subcortical structures mediating the attention response induced by amygdala stimulation, Exp. Neurol., 2:109–122.

    Article  PubMed  CAS  Google Scholar 

  • Vaccarino, F.J., and Vaccarino, A.L., 1989, Antagonism of cholecystokinin function in the rostral and caudal nucleus accumbens: differential effects on brain stimulation reward, Neurosei. Lett., 97:151–156.

    Article  CAS  Google Scholar 

  • Van Ree, J.M., Gaffori, O., and De Wied, D., 1983, In rats the behavioral profile of CCK-8-related peptides resembles that of antipsychotic agents, Eur. J. Pharmacol., 93:65–78.

    Google Scholar 

  • Vives, F., and Mogenson, G.J., 1986, Electrophysiological study of the effects of D1 and D2 dopamine antagonists on the interaction of converging inputs from the sensory-motor cortex and substantia nigra neurons in the rat, Neuroscience, 17:349–359.

    Article  PubMed  CAS  Google Scholar 

  • Voigt, M., Wang, R.Y., and Westfall, T.C., 1986, Cholecystokinin octa- peptides alter the release of endogenous dopamine from the rat nucleus accumbens in vitro, J. Pharmacol. Exp. Ther., 237:147–153.

    PubMed  CAS  Google Scholar 

  • Voigt, M.M., and Wang, R.Y., 1984, In vivo release of dopamine in the nucleus accumbens of the rab: modulation by cholecystokinin. Brain Res., 296:189–193.

    Article  PubMed  CAS  Google Scholar 

  • Wang, R.Y., 1988, Cholecystokinin, dopamine, and schizophrenia: recent progress and current problems, Ann. N. Y. Acad. Sci., 537:362–379.

    Article  PubMed  CAS  Google Scholar 

  • Wang, R.Y., and Hu, X.T., 1986, Does cholecystokinin potentiate dopamine action in the nucleus accumbens. Brain Res., 380:363–367.

    Article  PubMed  CAS  Google Scholar 

  • Weiss, F., Tanzer, D.J., and Ettenberg, A., 1988, Opposite actions of CCK-8 on amphetamine-induced hyperlocomotion and stereotypy following intracerebroventricular and intra-accumbens injections in rats, Pharmacol. Biochem. Behav., 30:309–317.

    Article  PubMed  CAS  Google Scholar 

  • White, N., and Weingarten, H., 1976, Effects of amygdaloid lesions on exploration by rats, Physiol. Behav., 17:73–79.

    Article  PubMed  CAS  Google Scholar 

  • Yang, C.R., and Mogenson, G.J., 1984, Electrophysiological responses of neurones in the nucleus accumbens to hippocampal stimulation and the attenuation of the excitatory responses by the mesolimbic dopaminergic system. Brain Res., 324:69–84.

    Article  PubMed  CAS  Google Scholar 

  • Yang, C.R., and Mogenson, G.J., 1986, Dopamine enhances terminal excitability of hippocampal- accumbens neurons via D2 receptor: role of dopamine in presynaptic inhibition, J. Neurosci., 6:2470–2478.

    PubMed  CAS  Google Scholar 

  • Yim, C.Y., and Mogenson, G.J., 1982, Response of nucleus accumbens neurons to amygdala stimulation and its modification by dopamine. Brain Res., 239:401–415.

    Article  PubMed  CAS  Google Scholar 

  • Yim, C.Y., and Mogenson, G.J., 1986, Mesolimbic dopamine projection modulates amygdala-evoked EPSP in nucleus accumbens neurons: an in vivo study. Brain Res., 369:347–352.

    Article  PubMed  CAS  Google Scholar 

  • Yim, C.Y., and Mogenson, G.J., 1988, Neuromodulatory action of dopamine in the nucleus accumbens: an in vivo intracellular study, Neuroscience, 26:403–415.

    Article  PubMed  CAS  Google Scholar 

  • Yim, C.Y., and Mogenson, G.J., 1989, Low doses of accumbens dopamine modulates amygdala suppression of spontaneous exploratory activity in rats. Brain Res., 477:202–210.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Plenum Press, New York

About this chapter

Cite this chapter

Yim, C.CY., Sheehy, L., Mogenson, G. (1991). Neuromodulatory Actions of Dopamine and Cholecystokinin in the Ventral Striatum. In: Napier, T.C., Kalivas, P.W., Hanin, I. (eds) The Basal Forebrain. Advances in Experimental Medicine and Biology, vol 295. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0145-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0145-6_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0147-0

  • Online ISBN: 978-1-4757-0145-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics