Skip to main content

Dopamine

An Endogenous Peripheral Neurotransmitter

  • Chapter
Dopamine Receptor Agonists

Part of the book series: New Horizons in Therapeutics ((NHTH))

Abstract

There is now considerable evidence for the presence of dopamine receptors in peripheral tissues, as is documented throughout this volume. There has been, however, a reluctance to accept the possibility of a peripheral dopaminergic neuronal system to innervate these receptors for several reasons. Traditionally, students are taught that the autonomic nervous system is composed of only two types of neurons, cholinergic and noradrenergic. It is difficult to break with tradition. Dopamine is present in autonomic nerves, and it represents about 5–10% of the norepinephrine content. Therefore, it is assumed to be solely a precursor for norepinephrine synthesis and not a neurotransmitter. We should recall that dopamine in the spinal cord represents about 5–10% of the norepinephrine, and, until recently, it was considered to be only a precursor for norepinephrine. There is now a vast literature on the presence of dopaminergic neurons in the cord together with speculation about their possible physiological role (Commissiong et al., 1978; Gentleman et al, 1981; Commissiong and Neff, 1979). What percentage of dopamine should be found in a nerve or tissue to raise suspicion that dopaminergic neurons are present within a structure? Is the percentage of dopamine present meaningful if it is concentrated in a few neurons and nerve endings? Moreover, the quantity of amine stored in a nerve ending may not be as important as its rate of formation and release onto receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alexander, R. W., Gill, T. R., Jr., Yamabe, H., Lovenberg, W., and Keiser, H. R., 1974, Effects of dietary sodium and acute saline infusion on the interrelationship between dopamine excretion and adrenergic activity in man, J. Clin. Invest. 54:194–200.

    Article  PubMed  CAS  Google Scholar 

  • Altura, B. M., Gebrewold, A., and Lassoff, S., 1980, Biphasic responsiveness of rat pial arterioles to dopamine: Direct observations on the microcirculation, Br. J. Pharmacol. 69:543–544.

    Article  PubMed  CAS  Google Scholar 

  • Attie, M. F., Brown, E. M., Gardner, D. G., Spiegel, A. M., and Aurbach, G. D., 1980, Characterization of the dopamine-responsive adenylate cyclase of bovine parathyroid cells and its relationship to parathyroid hormone secretion, Endocrinology 107:1776–1781.

    Article  PubMed  CAS  Google Scholar 

  • Badia, A., Bermejo, P., and Jane, F., 1982, Pre-and postsynaptic effects of Sulpiride in the rat isolated vas deferens, J. Pharm. Pharmacol. 34:266–268.

    Article  PubMed  CAS  Google Scholar 

  • Ball, S. G., Oats, N. S., and Lee, M. R., 1978, Urinary dopamine in man and rat: Effects of inorganic salts on dopamine excretion, Clin. Sci. Mol. Med. 55:167–173.

    PubMed  CAS  Google Scholar 

  • Beck, L., Pollard, A. A., Kayaalp, S. O., and Weiner, L. M., 1966, Sustained dilatation elicited by sympathetic nerve stimulation, Fed. Proc. 25:1596–1606.

    PubMed  CAS  Google Scholar 

  • Bell, C, 1982a, Dopamine as a postganglionic autonomic neurotransmitter, Neuroscience 7:1–8.

    Article  CAS  Google Scholar 

  • Bell, C, 1982b, Benztropine-induced Prolongation of responses to vasodilator nerve Stimulation in the canine paw pad, Br. J. Pharmacol. 76:231–233.

    Article  CAS  Google Scholar 

  • Bell, C, and Gillespie, J. S., 1981, Dopamine and noradrenaline levels in peripheral tissues of several mammalian species, J. Neurochem. 36:703–706.

    Article  PubMed  CAS  Google Scholar 

  • Bell, C, and Lang, W. J., 1979, Evidence for dopaminergic vasodilator innervation of the canine paw pad, Br. J. Pharmacol. 67:337–343.

    Article  PubMed  CAS  Google Scholar 

  • Bell, C, and Muller, B. D., 1982, Absence of dopamine-β-hydroxylase in some catecholamine-containing sympathetic ganglion cells of the dog: Evidence for dopaminergic autonomic neurones, Neurosci. Lett. 31:31–35.

    Article  PubMed  CAS  Google Scholar 

  • Bell, C, Lang, W. J., and Laska, F., 1978a, Dopamine-containing vasomotor nerves in the dog kidney, J. Neurochem. 31:77–83.

    Article  CAS  Google Scholar 

  • Bell, C, Lang, W. J., and Laska, F., 1978b, Dopamine-containing axons supplying the arterio-venous anastomoses of the canine paw pad, J. Neurochem. 31:1329–1333.

    Article  CAS  Google Scholar 

  • Bjorklund, A., Cegrell, L., Falck, B., Ritzin, M., and Rosengren, E., 1970, Dopaminecontaining cells in sympathetic ganglia, Acta Physiol. Scand. 78:334–338.

    Article  PubMed  CAS  Google Scholar 

  • Boadle-Biber, M. C, and Roth, R. H., 1975, Formation of dopamine and noradrenaline in rat vas deferens: Comparison with guinea pig vas deferens, Br. J. Pharmacol. 55:73–78.

    Article  PubMed  CAS  Google Scholar 

  • Brodde, O. E., 1982, Vascular dopamine receptors: Demonstration and characterization by in vitro studies, Life Sci. 31:289–306.

    Article  PubMed  CAS  Google Scholar 

  • Brown, E. M., Carroll, R. J., and Aurbach, G. D., 1977, Dopaminergic Stimulation of cyclic AMP accumulation and parathyroid hormone release from dispersed bovine parathyroid cells, Proc. Natl. Acad. Sci. U.S.A. 74:4210–4213.

    Article  PubMed  CAS  Google Scholar 

  • Brown, E. M., Attie, M. F., Reen, S., Gardner, D. G., Kebabian, J., and Aurbach, G. D., 1980, Characterization of dopaminergic receptors in dispersed bovine parathyroid cells, Mol. Pharmacol. 18:335–340.

    PubMed  CAS  Google Scholar 

  • Carey, R. M., Thorner, M. O., and Ortt, E. M., 1979, Effects of metoclopramide and bromocriptine on the renin-angiotensin-aldosterone system in man. Dopaminergic control of aldosterone, J. Clin. Invest. 63:727–735.

    Article  PubMed  CAS  Google Scholar 

  • Carlsson, A., and Lindqvist, M., 1963, Effect of chlorpromazine or haloperidol or formation of 3-methoxytyramine and normetanephrine in mouse brain, Acta Pharmacol. Toxicol. (Kbh.) 20:140–144.

    Article  CAS  Google Scholar 

  • Cavero, I., Massingham, R., and Lefevre-Borg, F., 1982a, Peripheral dopamine receptors, potential targets for a new class of antihypertensive agents. Part I. Subclassification and functional description, Life Sci. 31:939–948.

    Article  CAS  Google Scholar 

  • Cavero, I., Massingham, R., and Lefevre-Borg, F., 1982b, Peripheral dopamine receptors, potential targets for a new class of antihypertensive agents. Part II. Sites and mechanisms of action of dopamine receptor agonists, Life Sci. 31:1059–1069.

    Article  CAS  Google Scholar 

  • Collins, G. G., and West, G. B., 1968, The release of 3H-dopamine from the isolated rabbit ileum, Br. J. Pharmacol. 34:514–522.

    Article  PubMed  CAS  Google Scholar 

  • Commissiong, J. W., and Neff, N. H., 1979, Current Status of dopamine in the mammalian spinal cord, Biochem. Pharmacol. 28:1569–1573.

    Article  PubMed  CAS  Google Scholar 

  • Commissiong, J. W., Galli, C. L., and Neff, N. H., 1978, Differentiation of dopaminergic and noradrenergic neurons in rat spinal cord, J. Neurochem. 30:1095–1099.

    Article  PubMed  CAS  Google Scholar 

  • Costa, E., and Neff, H. H., 1966, Isotopic and non-isotopic measurements of the rate of catecholamine biosynthesis, in: Biochemistry and Pharmacology of the Basal Ganglia (E. Costa, L. J. Cote, and M. D. Yahr, eds.), Raven Press, New York, pp. 141–156.

    Google Scholar 

  • Dahlstrom, A., and Fuxe, K., 1965, Evidence of the existence of an outflow of noradrenaline nerve fibers in the ventral roots of the rat spinal cord, Experientia 21:409–410.

    Article  PubMed  CAS  Google Scholar 

  • Dinerstein, R. J., Vannice, J., Henderson, R. C, Roth, L. J., Goldberg, L. I., and Hoffmann, P. C, 1979, Histofluorescence techniques provide evidence for dopamine-containing neuronal elements in canine kidney, Science 205:497–499.

    Article  PubMed  CAS  Google Scholar 

  • Dunn, M. G., and Bosmann, B. H., 1981, Peripheral dopamine receptor identification: Properties of a specific dopamine receptor in the rat adrenal zona glomerulosa, Biochem. Biophys. Res. Commun. 99:1081–1087.

    Article  PubMed  CAS  Google Scholar 

  • Edvinsson, L., Hardebo, J. E., McCulloch, J., and Owman, C, 1978, Effects of dopaminergic agonists and antagonists on isolated cerebral blood vessels, Acta. Physiol. Scand. 104:349–359.

    Article  PubMed  CAS  Google Scholar 

  • Eranko, O., and Harkonen, M., 1963, Histochemical demonstration of fluorogenic amines in the cytoplasm of sympathetic ganglion cells of the rat, Acta Physiol. Scand. 58:285–286.

    Article  CAS  Google Scholar 

  • Furuta, Y., Hashimoto, K., Iwatsuki, K., and Takeuchi, 0., 1973, Effects of enzyme inhibitors of catecholamine metabolism and of haloperidol on the pancreatic secretion induced by L-DOPA and by dopamine in dogs, Br. J. Pharmacol. 47:77–84.

    Article  PubMed  CAS  Google Scholar 

  • Gentleman, S., Parenti, M., Commissiong, J. W., and Neff, N. H., 1981, Dopamine-activated adenylate cyclase of spinal cord: Supersensitivity following transection of the cord, Brain Res. 210:271–275.

    Article  PubMed  CAS  Google Scholar 

  • George, D. T., and Rayfield, E. J., 1974, L-Dopa induced plasma glucagon release, J. Clin. Endocrinol. Metab. 39:618–621.

    Article  PubMed  CAS  Google Scholar 

  • Goldberg, L. I., 1972, Cardiovascular and renal actions of dopamine: Potential clinical applications, Pharmacol. Rev. 24:1–29.

    PubMed  CAS  Google Scholar 

  • Goldberg, L. I., Volkman, P. H., and Kohli, J. D., 1978, A comparison of the vascular dopamine receptor with other dopamine receptors, Annu. Rev. Pharmacol. Toxicol. 18:57–79.

    Article  PubMed  CAS  Google Scholar 

  • Hadjiconstantinou, M., Potter, P. E., and Neff, N. H., 1982, Transsynaptic modulation via muscarinic receptors of serotonin-containing SIF cells of superior cervical ganglion, J. Neurosci. 2:1836–1839.

    PubMed  CAS  Google Scholar 

  • Head, R. J., and Berkowitz, B. A., 1979, Concentration and function of dopamine in normal and diseased blood vessels, in: Peripheral Dopamine Receptor (J. L. Imbs and J. Schwartz, eds.), Pergamon Press, Oxford, pp. 173–181.

    Google Scholar 

  • Head, R. J., Hjelle, J. T., Jarrott, B., Berkowitz, B., Cardinale, G., and Spector, S., 1980, Isolated brain microvessels: Preparation, morphology, histamine and catecholamine contents, Blood Vessels 17:173–186.

    PubMed  CAS  Google Scholar 

  • Heilman, R. D., and Lum, B. K., 1971, Studies on the intestinal relaxation produced by dopamine, J. Pharmacol. Exp. Ther. 178:63–72.

    PubMed  CAS  Google Scholar 

  • Hokfelt, T., Kellerth, J. O., Nilsson, G., and Pernow, B., 1975, Experimental immunohistochemical studies on the localization and distribution of substance P in cat primary sensory neurons, Brain Res. 100:232–252.

    Article  Google Scholar 

  • Iwatsuki, K., and Chiba, S., 1980, Comparative study of the secretory response to dopamine and seven amino acid conjugated derivatives on the blood-perfused canine pancreas, Jpn. J. Pharmacol. 30:621–627.

    Article  PubMed  CAS  Google Scholar 

  • Karoum, F., Garrison, C. K., Neff, N. H., and Wyatt, R. J., 1977, Transsynaptic modulation of dopamine metabolism in the rat superior cervical ganglion, J. Pharmacol. Exp. Ther. 201:654–661.

    PubMed  CAS  Google Scholar 

  • Karoum, F., Speciale, S. G., Jr., and Neff, N. H., 1980, 3,4-Dihydroxyphenylacetic acid content of sympathetic ganglia as a possible biochemical indicator of small intensely fluorescent cell participation in ganglionic transmission, Biochem. Pharmacol. 29:118–119.

    Article  PubMed  CAS  Google Scholar 

  • Katz, D. M., Markey, K. A., Goldstein, M., and Black, I. B., 1982, Expression of catecholaminergic characteristic by peripheral sensory ganglion cells in the normal adult rat in vivo, Soc. Neurosci. Abstr. 8:8.

    Google Scholar 

  • Kebabian, J. W., and Calne, D. B., 1979, Multiple receptors for dopamine, Nature 277:93–96.

    Article  PubMed  CAS  Google Scholar 

  • Kojima, H., Suetake, K., Yokoo, H., Anraku, S., Inanago, K., Higashi, H., Nishi, S., Yamamoto, T., and Ochi, J., 1981, Dopamine-containing cells in rabbit nodose ganglia, Experientia 37:1332–1333.

    Article  PubMed  CAS  Google Scholar 

  • Koslow, S. H., Bjegovic, M., and Costa, E., 1975, Catecholamines in sympathetic ganglia of rat: Effects of dexamethasone and reserpine, J. Neurochem. 24:277–281.

    Article  PubMed  CAS  Google Scholar 

  • Lackovic, Z., and Neff, N. H., 1980, Evidence for the existence of peripheral dopaminergic neurons, Brain Res. 193:289–292.

    Article  PubMed  CAS  Google Scholar 

  • Lackovic, Z., Kleinman, J., Karoum, F., and Neff, N. H., 1981, Dopamine and its metabolites in human peripheral nerves: Is there a widely distributed system of peripheral dopaminergic nerves? Life Sci. 29:917–922.

    Article  PubMed  CAS  Google Scholar 

  • Lackovic, Z., Relja, M., and Neff, N. H., 1982, Catabolism of endogenous dopamine in peripheral tissues: Is there an independent role for dopamine in peripheral neurotransmission? J. Neurochem. 38:1453–1458.

    Article  PubMed  CAS  Google Scholar 

  • Libet, B., 1977, The role SIF-cells play in ganglionic transmission, Adv. Biochem. Psychopharmacol. 16:541–546.

    PubMed  CAS  Google Scholar 

  • Libet, B., and Owman, C, 1974, Concomitant changes in formaldehyde-induced fluorescence of dopamine interneurons and in slow inhibitory postsynaptic potentials of the rabbit superior cervical ganglion, induced by stimulation of the preganglionic nerve or by a muscarinic agent, J. Physiol. (Lond.) 237:635–662.

    CAS  Google Scholar 

  • Libet, B., and Tosaka, T., 1970, Dopamine as a synaptic transmitter and modulator in sympathetic ganglia; a different mode of synaptic action, Proc. Natl. Acad. Sci. U.S.A. 67:667–673.

    Article  PubMed  CAS  Google Scholar 

  • Lokhandwala, M. F., 1979, Presynaptic receptor Systems on cardiac sympathetic nerves, Life Sci. 24:1823–1832.

    Article  PubMed  CAS  Google Scholar 

  • Long, J. P., Heintz, S., Cannon, J. G., and Kim, J., 1975, Inhibition of the sympathetic nervous system by 5,6-dihydroxy-2-dimethylamino tetralin (M-7), apomorphine and dopamine, J. Pharmacol. Exp. Ther. 192:336–342.

    PubMed  CAS  Google Scholar 

  • Lutold, B. E., Karoum, F., and Neff, N. H., 1979. Activation of rat sympathetic ganglia SIF cell dopamine metabolism by muscarinic agonists, Eur. J. Pharmacol. 54:21–26.

    Article  PubMed  CAS  Google Scholar 

  • Matthews, M. R., 1980, Ultrastructural studies relevant to the possible funetions of small granule-containing cells in the rat superior cervical ganglion, Adv. Biochem. Psychopharmacol. 25:77–86.

    PubMed  CAS  Google Scholar 

  • McKenna, T. J., Island, D. P., Nicholson, W. E., and Liddle, G. W., 1979, Dopamine inhibits angiotensin-stimulated aldosterone biosynthesis in bovine adrenal cells, J. Clin. Invest. 64:287–291.

    Article  PubMed  CAS  Google Scholar 

  • Morgunov, N., and Baines, A. D., 1981, Renal nerves and catecholamine excretion, Am. J. Physiol. 240:F75–F81.

    PubMed  CAS  Google Scholar 

  • Mukhopadhyay, A. K., and Weisbrodt, N., 1977, Effect of dopamine on esophageal motor function, Am. J. Physiol. 232:E19–E24.

    PubMed  CAS  Google Scholar 

  • Murthy, V. V., Gilbert, J. C, Goldberg, L. I., and Kuo, J. F., 1976, Dopamine-sensitive adenylate cyclase in canine renal artery, J. Pharm. Pharmacol. 28:567–571.

    Article  PubMed  CAS  Google Scholar 

  • Nagy, J. I., and Hunt, S. P., 1982, Fluoride-resistant acid phosphatase-containing neurones in dorsal root ganglia are separate from those containing substance P or somatostatin, Neuroscience 7:89–97.

    Article  PubMed  CAS  Google Scholar 

  • Nakajima, T., Naitoh, F., and Kuruma, I., 1977, Dopamine-sensitive adenylate cyclase in the rat kidney particulate preparation, Eur. J. Pharmacol. 41:163–169.

    Article  PubMed  CAS  Google Scholar 

  • Nielsen, K. C, and Owman, C, 1967, Adrenergic innervation of pial arteries related to the circle of Willis of the cat, Brain Res. 6:773–776.

    Article  PubMed  CAS  Google Scholar 

  • Norbiato, G., Bevilacqua, M., Raggi, U., Micossi, P., and Moroni, C, 1977, Metoclopramide increases plasma aldosterone concentration in man, J. Clin. Endocrinol. Metab. 45:1313–1316.

    Article  PubMed  CAS  Google Scholar 

  • Noth, R. H., McCallum, R. W., Contino, C, and Havelick, J., 1980, Tonic dopaminergic suppression of plasma aldosterone, J. Clin. Endocrinol. Metab. 51:64–69.

    Article  PubMed  CAS  Google Scholar 

  • Owman, C, and Santini, M., 1966, Adrenergic nerves in spinal ganglia of the cat, Acta Physiol. Scand. 68:127–128.

    Article  Google Scholar 

  • Price, J., and Mudge, A. W., 1983, A subpopulation of rat dorsal root ganglion neurones in catecholaminergic, Nature 301:241–243.

    Article  PubMed  CAS  Google Scholar 

  • Relja, M., Lackovic, Z., and Neff, N. H., 1982, Evidence for the presence of dopaminergic receptors in vas deferens, Life Sci. 31:2571–2575.

    Article  PubMed  CAS  Google Scholar 

  • Rolewicz, T. F., and Zimmerman, B. G., 1972, Peripheral distribution of cutaneous sympathetic vasodilator system, Am. J. Physiol. 223:939–943.

    PubMed  CAS  Google Scholar 

  • Shima, S., Kawashima, Y., Hirai, M., and Asakura, M., 1980, Effect of adrenergic Stimulation on adenylate cyclase activity in rat prostate, Biochem. Biophys. Acta 628:255–262.

    Article  PubMed  CAS  Google Scholar 

  • Simon, A., and Van Maanen, E. F., 1976, Dopamine receptors and dopaminergic nerves in vas deferens of the rat, Arch. Int. Pharmacodyn. Ther. 222:4–15.

    PubMed  CAS  Google Scholar 

  • Sowers, J. R., Stern, N., and Taylor, I. L., 1982, Evidence for dopaminergic modulation of pancreatic Polypeptide secretion in man, Life Sci. 31:2971–2975.

    Article  PubMed  CAS  Google Scholar 

  • Spitz, I. M., Zylber, E., Jersky, J., and Leroith, D., 1979, Atropine suppression of basal and metoclopramide-induced human pancreatic Polypeptide secretion in man, Metabolism 28:527–530.

    Article  PubMed  CAS  Google Scholar 

  • Stephenson, R. K., Sole, M. J., and Baines, A. D., 1982, Neural and extraneural catecholamine produetion by rat kidneys, Am. J. Physiol. 242:F261–F266.

    PubMed  CAS  Google Scholar 

  • Suzuki, Y., Okada, T., Shibuya, M., Mutsuga, N., Kageyama, N., and Hidaka, H., 1983, Regional distribution of dopamine and norepinephrine in canine cerebral arteries—Effect of pre-or postganglionic sympathetic denervation, Brain Res. 258:53–58.

    Article  CAS  Google Scholar 

  • Tayo, F. M., 1979, Potentiation of dopamine-induced contractions of the rat vas deferens by low concentrations of its antagonists, Arch. Int. Pharmacodyn. Ther. 241:190–196.

    PubMed  CAS  Google Scholar 

  • Tayo, F. M., 1981, Prejunctional inhibitory dopamine receptors in the rat isolated vas deferens, Arch. Int. Pharmacodyn. Ther. 254:28–37.

    PubMed  CAS  Google Scholar 

  • Valenzuela, J. E., 1976, Dopamine as a possible neurotransmitter in gastric relaxation, Gastroenterology 71:1019–1022.

    PubMed  CAS  Google Scholar 

  • Verhofstad, A. A. J., Steinbusch, H. W. M., Penke, B., Varga, J., and Joosten, H. W. J., 1981, Serotonin-immunoreactive cells in the superior cervical ganglion of the rat. Evidence for the existence of separate Serotonin-and catecholamine-containing small ganglionic cells, Brain Res. 212:39–49.

    Article  PubMed  CAS  Google Scholar 

  • Wamsley, J. K., Black, A. C, Jr., Redick, J. A., West, J. R., and Williams, T. H., 1978, SIF cells, cyclic AMP responses, and catecholamines of guinea pig superior cervical ganglion, Brain Res. 156:75–82.

    Article  PubMed  CAS  Google Scholar 

  • Williams, T. H., Chiba, T., Black, A. C., Jr., Bhalla, R. C, and Jew, J., 1976, Species variation in SIF cells of superior cervical ganglia: Are there two functional types? in: SIF Cells: Structure and Function of the Small Intensely Fluorescent Sympathetic Cells (O. Eranko, ed.), Fogarty International Center Proceedings No. 30, pp. 143–162. DHEW Publication No (NIH) 76-942, Washington, D. C.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Plenum Press, New York

About this chapter

Cite this chapter

Neff, N.H., Hadjiconstantinou, M., Lackovic, Z. (1984). Dopamine. In: Poste, G., Crooke, S.T. (eds) Dopamine Receptor Agonists. New Horizons in Therapeutics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0310-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0310-8_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0312-2

  • Online ISBN: 978-1-4757-0310-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics