Skip to main content

Part of the book series: NATO ASI Series ((NSSA,volume 114))

Abstract

With the development of Cybernetics, Weiner (1948) showed that there was considerable potential in the application to the study of biological systems of techniques of analysis normally employed in the physical sciences. Within the broad range of physiological oscillations is a subgroup which occurs in physiological systems involved in homeostasis. Such systems have the potential for oscillatory behavior because their distributed nature allows the existence of significant time delays in reflex arcs. Physiological systems of this type can be considered as a number of different elements linked together, typically by neural pathways, to give the negative feedback necessary for homeostasis. Often such systems behave as spontaneous oscillators (Hyndman, Kitney and Sayers, 1971), the frequency of oscillation being determined by the characteristics of the system. A change in these characteristics can be considered to be equivalent to changing the setting of an oscillator so that it takes up a new and normally stable oscillatory mode. It is possible to envisage the human body as containing a number of systems which frequently oscillate. There is also evidence that biological systems which oscillate at frequencies higher than that consistent with the 24-hour day interact with each other, e.g. the interaction between the heart rate control and the respiration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akaike, H., 1969, Fitting autoregressive models for prediction, Ann. Inst. of Statis. Math., 21:243–247.

    Article  Google Scholar 

  • Angelone, A., and Coulter, N. A., 1964, Respiratory sinus arrhythmia: a frequency dependent phenomenon, J. Appl. Physiol., 19:479–482.

    PubMed  Google Scholar 

  • Bergland, G. D., 1969, A guided tour of the fast Fourier transforms, IEEE Spectrum, 6:41–52.

    Article  Google Scholar 

  • Bradley, G. W., Euler, C. von, Martilla, I., and Roos, B., 1975, Biol. Cybernetics, 19:105.

    Article  Google Scholar 

  • Brown, A. M., 1980, Receptors under pressure: an update on baroreceptros, Circ. Res., 46:1–10.

    PubMed  Google Scholar 

  • Burton, A. C., and Taylor, D., 1940, A study of the adjustment of peripheral vascular tone to the requirements of body temperature, Am. J. Physiol., 129:565–577.

    Google Scholar 

  • Clynes, M., 1960, Respiratory sinus arrhythmia: laws derived from computer simulation, J. Appl. Physiol., 15:863–874.

    PubMed  Google Scholar 

  • Davies, C. T. M., and Neilson, J. M. M., 1967, Sinus arrhythmia in man at rest, J. Appl. Physiol., 22:947–955.

    PubMed  Google Scholar 

  • Freyschuss, U., and Melcher, A., 1976, Respiratory sinus arrhythmia in man: relation to cardiovascular pressures, Scand. J. Clin. Invest., 36:221–229.

    Article  PubMed  Google Scholar 

  • Grodins, F., 1963, Control theory and biological systems, Columbia Univ. Press, NY.

    Google Scholar 

  • Hayashi, C., 1964, Nonlinear oscillations in physical systems, McGraw Hill, New York.

    Google Scholar 

  • Hayashi, C., Shibayama, H., and Nishikawa, Y., 1960, Frequency entrainment in a self-oscillatory system with external force, IRE Trans. CircuitTheory, 413–422.

    Google Scholar 

  • Hatakegama, I., 1967, Analysis of the baroreceptor control of the circulation, in: “The Physical Basis of Circualtory Transport: Regulation and Exchange”, A. C. Guyton and E. B. Reeve, eds., Pub. Saunders.

    Google Scholar 

  • Hirsh, J. A., and Bishop, B., 1981, Respiratory sinus arrhythmia in humans: how breathing pattern modulates heart rate, Am. J. Physiol., 241: H620–629.

    Google Scholar 

  • Hyndman, B. W., Kitney, R. I., and Sayers, B. McA., 1971, Spontaneous rhythms in physiological control systems, Nature, 233:339–341.

    Article  PubMed  Google Scholar 

  • Kay, S. M., 1979, The effects of noise on the autoregressive spectral estimator, IEEE Trans. ASSP., 5:478–485.

    Article  Google Scholar 

  • Kircheim, H. R., 1976, Baroreceptor reflexes, Physiol. Rev., 56:100–176.

    Google Scholar 

  • Kitney, R. I., 1974, The analysis and simulation of the human thermoregulator control system, Medical & Biological Engineering, Jan. 57–65.

    Google Scholar 

  • Kitney, R. I., 1975, An analysis of the nonlinear behavior of the human thermal control system, J. Theoretical Biol., 52:231–248.

    Article  Google Scholar 

  • Kitney, R. I., 1979, A nonlinear model for studying oscillations in theblood pressure control system, J. Biomedical Engineering, 1:89–99.

    Article  Google Scholar 

  • Kitney, R. I., and Giddens, D. P., 1982, Extraction and characterization of underlying velocity waveforms in post stenotic flow, IEE Proc., 129:651–662.

    Google Scholar 

  • Kitney, R. I., Linkens, D. A., Selman, A. C., and McDonald, A. H., 1982, The interaction between heart rate and respiration: Part 2 — nonlinear analysis on computer modelling, Automedica, 4:141–153.

    Google Scholar 

  • Levison, W. H., Barnet, G. O., and Jackson, W. D., 1966, Nonlinear analysis of baroreceptor reflex system, Circ. Res., 18:673.

    PubMed  Google Scholar 

  • Linkens, D. A., 1977, The stability of entrainment conditions for RLC coupled van der Pol Oscillators used as a model for intestinal electrical rhythms, Bull. Math. Biol., 39:359–372.

    PubMed  Google Scholar 

  • Melcher, A., 1980, Carotid baroreflex heart rate control during the active and the assisted breathing cycle in man, Acta. Physiol. Scand., 108:165–171.

    Article  PubMed  Google Scholar 

  • Minorsky, N., 1962, Nonlinear Oscillations, Van Nostrand, London and New York.

    Google Scholar 

  • Ninomiya, I., Nisimaru, N., and Irisawa, H., 1971, Sympathetic nerve activity to the spleen, kidney and heart in response to baroreceptor input, Am. J. Physiol., 221:1346–1351.

    PubMed  Google Scholar 

  • Rosenbaum, M., and Rice, D., 1968, Frequency response characteristics of the vascular resistance vessels, Am. J. Physiol., 315:1397.

    Google Scholar 

  • Scher, A. M., and Young, A. C., 1970, Reflex carotid sinus regulation of heart rate unanaesthetized dogs, Am. J. Physiol., 218:780–789.

    PubMed  Google Scholar 

  • Selman, A. C., McDonald, A. H., Kitney, R. I., and Linkens, D. A., 1982, The interaction between heart rate and respiration: Part 1 — Experimental studies in man, Automedica, 4:131–139.

    Google Scholar 

  • Spickler, J. W., Kezdi, P., and Geller, E., 1967, Transfer characteristics of the carotid sinus pressure control system, in: “Baroreceptors and Hypertension”, P. Kedzi, ed., Pergamon Press, Oxford.

    Google Scholar 

  • Torre, V., 1975, Synchronization of nonlinear biochemical oscillators coupled by diffusion, Biol. Cybernetics, 17:137–144.

    Article  Google Scholar 

  • Ulrych, T. J., 1972, Maximum entropy power spectrum of truncated sinusoids, J. Geophys. Res., 77:1396–1400.

    Article  Google Scholar 

  • Ulrych, T. F., and Bishop, T. N., 1975, Maximum entropy spectral analysis and autoregressive decomposition, Rev. Geophys. and Space Physics., 13:138–300.

    Google Scholar 

  • Weiner, N., 1948, Cybernetics, J. Wiley & Sons, New York.

    Google Scholar 

  • Wever, R., 1965, in: “Circadian Clocks”, J. Aschoff, ed., North Holland, Amsterdam.

    Google Scholar 

  • Winfree, A. T., 1980, The geometry of biological time, Van Nostrand, Amsterdam.

    Google Scholar 

  • Womack, B. F., 1971, The analysis of respiratory sinus arrhythmia using spectral analysis methods, IEEE Trans. Bio-med Eng., BME-18 162:399–409.

    Article  Google Scholar 

  • Ypres, D. L., Clapham, D. E., and De Haan, R. L., 1979, Development of electrical coupling and action potential synchrony between paired aggregates of embryonic heart cells, Membrane Biol., 51:75–96.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Kitney, R.I. (1986). Heart Rate Variability in Normal Adults. In: Grossman, P., Janssen, K.H.L., Vaitl, D. (eds) Cardiorespiratory and Cardiosomatic Psychophysiology. NATO ASI Series, vol 114. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0360-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0360-3_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0362-7

  • Online ISBN: 978-1-4757-0360-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics