Skip to main content

Physical Properties of Filament Wound Glass Epoxy Structures as Applied to Possible Use in Liquid Hydrogen Bubble Chambers

  • Conference paper
Advances in Cryogenic Engineering

Part of the book series: Advances in Cryogenic Engineering ((ACRE,volume 11))

Abstract

The bubble chamber has established Itself in high-energy physics research as one of the most useful tools. Since 1952, after the first bubble chamber was Introduced by Glaser[1], hundreds of important experiments have been carried on successfully. With the increase of the energy of modem accelerators the need for better and larger bubble chambers has grown. Recent proposals to match the size and magnetic field to the particle energy [2] show an increase in the bubble chamber size up to 3.93 m (14 ft). However, the magnetic field chosen was 20 kG, partly to save DC power, which for the above proposal is about 11 MW.

Work supported by U.S. Atomic Energy Commission.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. A. Glaser, Phys. Rev. 87:665 (1952).

    Article  Google Scholar 

  2. M. Derrick, T. H. Fields, J. G. Fetkovich, K. B. Martin, E. G. Pewitt, and A. Tamosaitis, “Proposal for the Construction of a 12-Foot Hydrogen Bubble Chamber,” Argonne National Laboratory (June 10, 1964).

    Google Scholar 

  3. R. P. Shutt, NucL Instr. Methods 20:71 (1963).

    Article  Google Scholar 

  4. C. Laverick and G. Lobell, Rev. Sci. Instr. 36 (6): 825 (1965).

    Article  Google Scholar 

  5. W. H. Bergmann, J. Gruber, G. Hahn, G. Harigel, P. Meyer, K. Moustafa, and H. Rohm, NucL Instr. Methods 20(1):116 (1963).

    Article  Google Scholar 

  6. D. C. Colley, J. B. Kinson, and L. Riddiford, NucL Instr. Methods 4:26 (1959).

    Article  Google Scholar 

  7. K. N. Mukhin, R. S. Shlyapnikov, and L. M. Barkov, International Conference on High-Energy Accelerators and Instrumentation, CERN (1959), p. 514.

    Google Scholar 

  8. J. M. Toth, Jr., in: Advances in Cryogenic Engineering, Vol. 9, Plenum Press, New York (1964), p. 537.

    Google Scholar 

  9. J. M. Toth, Jr. and J. R. Barber, in: Advances in Cryogenic Engineering, Vol. 10, Plenum Press, New York (1965), p. 134.

    Book  Google Scholar 

  10. D. W. Chamberlain, in: Advances in Cryogenic Engineering, Vol. 10, Plenum Press, New York (1965), p. 117.

    Book  Google Scholar 

  11. S. Timoshenko and S. Woinowksy-Krieger, Theory of Plates and Shells, McGraw-Hill Book Company, New York (1959).

    Google Scholar 

  12. V. V. Novozhilov, The Theory of Thin Shells, Nordhoff (1959).

    Google Scholar 

  13. H. Brechna, “Effect of Nuclear Radiation on Magnet Insulation in High Energy Accelerators,” SLAC Report No. 40, Stanford Linear Accelerator Center, Stanford University, Stanford, California (1965).

    Google Scholar 

  14. H. Brechna, “Mechanical and Thermal Properties of Thick Wall Filament Wound Chambers,” SLAC Internal Report, Stanford Linear Accelerator Center, Stanford University, Stanford, California (1964).

    Google Scholar 

  15. J. Hertz and J. F. Haskins, in: Advances in Cryogenic Engineering, Vol. 10, Plenum Press, New York (1965), p. 163.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1966 Springer Science+Business Media New York

About this paper

Cite this paper

Brechna, H., Haldemann, W. (1966). Physical Properties of Filament Wound Glass Epoxy Structures as Applied to Possible Use in Liquid Hydrogen Bubble Chambers. In: Timmerhaus, K.D. (eds) Advances in Cryogenic Engineering. Advances in Cryogenic Engineering, vol 11. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0522-5_34

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0522-5_34

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0524-9

  • Online ISBN: 978-1-4757-0522-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics