Skip to main content

Density Functionals for Coulomb Systems

  • Chapter
Density Functional Methods In Physics

Part of the book series: NATO ASI Series ((ASIB,volume 123))

Abstract

The idea of trying to represent the ground state (and perhaps some of the excited states as well) of atomic, molecular, and solid state systems in terms of the diagonal part of the one-body reduced density matrix ρ(x) is an old one. It goes back at least to the work of Thomas [1] and Fermi [2] in 1927. In 1964 the idea was conceptually extended by Hohenberg and Kohn (HK) [3]. Since then many variations on the theme have been introduced. As the present article is not meant to be a review, I shall not attempt to list the papers in the field. Some recent examples of applications are Refs. 4 and 5. Some recent examples of theoretical papers which will play a role here are Refs. 6–12. A bibliography can be found in the recent review article of Bamzai and Deb [13].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L.H. Thomas, Proc. Camb. Phil. Soc. 23: 542 (1927).

    Article  ADS  MATH  Google Scholar 

  2. E. Fermi, Rend. Accad. Naz. Lincei 6: 602 (1927).

    Google Scholar 

  3. P.Hohenberg and W. Kohn, Phys. Rev. B136: 864 (1964).

    Article  MathSciNet  ADS  Google Scholar 

  4. M.M. Morell, R.G. Parr and M. Levy, J. Chem. Phys. 62: 549 (1975).

    Article  ADS  Google Scholar 

  5. R.G. Parr, S. Cadre and L.J. Bartolotti, Proc. Natl. Acad. Sci. 76: 2522 (1979).

    Article  ADS  Google Scholar 

  6. R.A. Donnelly and R.G. Parr, J. Chem. Phys. 69: 4431 (1978).

    Article  ADS  Google Scholar 

  7. H. Englisch and R. Englisch, “Hohenberg-Kohn theorem and non-vrepresentable densities”, Physica A, to be published.

    Google Scholar 

  8. T.L. Gilbert, Phys. Rev. B6: 211 (1975).

    Google Scholar 

  9. J.E. Harriman, Phys. Rev. A6: 680 (1981).

    Google Scholar 

  10. M. Levy, Proc. Natl. Acad. Sci. USA 76: 6062 (1979).

    Article  ADS  Google Scholar 

  11. M. Levy, Phys. Rev. A26: 1200 (1982).

    Article  ADS  Google Scholar 

  12. S.M. Valone, J. Chem. Phys. 73:1344 (1980); ibid. 73: 4653 (1980).

    Google Scholar 

  13. A.S. Bamazai and B.M. Deb, Rev. Mod. Phys. 53:95 (1981). Erratum, 53: 593 (1981).

    Google Scholar 

  14. E.H. Lieb and B. Simon, Adv. Math. 23:22 (1977) See also Thomas-Fermi theory revisited, Phys. Lett.31:681 (1973. See also Refs. 16 and 25.

    Google Scholar 

  15. M. Hoffmann-Ostenhof and T. Hoffmann-Ostenhof, Phys. Rev. A16: 1782 (1977).

    MathSciNet  ADS  Google Scholar 

  16. E.H. Lieb, Rev. Mod. Phys. 48: 553 (1976).

    Article  MathSciNet  ADS  Google Scholar 

  17. N.H. March and W.H. Young, Proc. Phys. Soc. 72: 182 (1958).

    Article  ADS  MATH  Google Scholar 

  18. M. Reed and B. Simon, Methods of Modern Mathematical Physics (Academic. New York,1978), Vol. 4.

    Google Scholar 

  19. S. Mazur, Studia Math. 4: 70 (1933).

    Google Scholar 

  20. R.B.Israel, Convexity in the Theory of Lattice Gases(Princeton NJ. (1979).

    Google Scholar 

  21. E.H. Lieb and W.E. Thirring, “Inequalities for the moments of the eigenvalues of the Schrödinger hamiltonian and their relation to Sobolev inequalities”, in Studies in Mathematical Physics, E.H. Lieb, B. Simon and A.S. Wightman, Eds. (Princeton U.P., Princeton, N.J. 1976). See also Phys. Rev. Lett. 687 (1975); Errata 35:1116 (1975).

    Google Scholar 

  22. E.H. Lieb, Am. Math. Soc. Proc. Symp. Pure Math. 36: 241 (1980).

    Article  MathSciNet  Google Scholar 

  23. E.H. Lieb, Phys. Lett. A70: 444 (1979).

    Article  MathSciNet  Google Scholar 

  24. E.H. Lieb and S. Oxford, Int. J. Quantum Chem. 19: 427 (1981).

    Article  Google Scholar 

  25. È.H. Lieb, Rev. Mod. Phys. 53:603 (1981); Errata, 54: 311 (1982).

    Google Scholar 

  26. E.H. Lieb, Phys. Rev. Lett.46:457 (1981); Erratum, 47_69 (1981).

    Google Scholar 

  27. J.K. Percus, Int. J. Quantum Chem. 13: 89 (1978).

    Article  Google Scholar 

  28. R.A. Adams, Sobolev Spaces (Avademic Press, New York)(1975).

    Google Scholar 

  29. W. Fenchel, Can. J. Math. 1: 23 (1949).

    Article  MathSciNet  Google Scholar 

  30. W. Kohn and L.J. Sham, Phys. Rev. A140: 1133 (1965).

    Article  MathSciNet  ADS  Google Scholar 

  31. H. Brezis, Analyse Functionelle, Theorie et Applications, Masson, Paris (1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Plenum Press, New York

About this chapter

Cite this chapter

Lieb, E.H. (1985). Density Functionals for Coulomb Systems. In: Dreizler, R.M., da Providência, J. (eds) Density Functional Methods In Physics. NATO ASI Series, vol 123. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0818-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0818-9_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0820-2

  • Online ISBN: 978-1-4757-0818-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics