Skip to main content

Biomass for Energy — Fuels Now and in the Future

  • Chapter
Biomass Utilization

Part of the book series: NATO Advanced Science Institutes Series ((NSSA,volume 67))

Abstract

Today about 14 percent of the world’s primary energy is derived from biomass, equivalent to 20 m barrels of oil per day. Predominant use is in the rural areas of developing countries where half of the world’s population lives. For example, Kenya derives three-fourths, India one-half, China one-third, and Brazil one-quarter of their total energy from biomass. A number of developed countries also derive a considerable amount of energy from biomass, e.g. Sweden nine percent and the U.S.A. three percent. Worldwide expenditure on biomass programmes is over two billion dollars per year. However, let me start by indicating what I am not going to advocate. I do not suggest that biomass will solve the energy problems of the world. I am not going to propose cutting down all the trees in the world or to reforest the world; and I am not advocating that we all become vegetarians. What I hope to clarify is that biomass already contributes a significant part of the world’s energy; it is an important provider of energy to very many people. But how much biomass will contribute in the future will depend very much on decisions that are made both at the local level and at the national level, in addition to international policy making. Decisions that are made over the next few years will significantly influence the level of biomass energy use in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alexander, G. 1981. High percentage gasohol fleet reliability tests. See BioEnergy Council, 1981, p. 1023.

    Google Scholar 

  • Bernard, G.W. and Hall, D.O. 1982. Energy from renewable resources: Ethanol fermentation and anaerobic digestion. In “Biotechnology Vol. III”., ed. H. Dellweg, Verlag Chemie, Weinheim (In press).

    Google Scholar 

  • Barnett, A., Pyle, D.L. and Subramanian, S.K. 1978. Biogas technology in the Third World: A multidisciplinary review. Intl. Devel. Res. Corp. (IDRC), Ottawa, KlP 5YF, Canada.

    Google Scholar 

  • Ben-Amotz, A. and Avron, M. 1981. Glycerol and -carotene metabolism in the halotolerant alga Dunaliella: A model system for biosolar energy conversion. Trends Biochem. Sci. TIBS 6, 296298.

    Google Scholar 

  • Bernhart, W. 1981. Alternative fuels from biomass and their use in Transport. In: Energy from Biomass, Palz, W., Chartier, P. and Hall, D.O., Eds. Applied Sci. Publ., London. pp. 815825.

    Google Scholar 

  • BioEnergy Council. 1980. BioEnergy ‘80 Proceedings. The BioEnergy Council, Washington, D.C. 20006, USA.

    Google Scholar 

  • BioEnergy Council. 1981. International BioEnergy Directory. The Bio-Energy Council, Washington, D.C. 20006, USA.

    Google Scholar 

  • Bolton, J.R. and Hall, D.O. 1979. Photochemical conversion and storage of solar energy. Ann. Rev. Energy 4 353–401.

    Google Scholar 

  • Brown, L. 1980. Food or fuel - new competition for the world’s cropland. Paper no. 35, Worldwatch Institute, Washington, D.C. 20036, U.S.A.

    Google Scholar 

  • Buchanan, R.A., Cull, I.M., Otey, F.H., and Russell, C.R. 1978. Hydrocarbon and rubber-producing crops. Econ. Bot. 32, 131–153.

    Google Scholar 

  • Calvin, M. 1980. Petroleum Plantations and Synthetic Chloroplasts. Energy 4, 851–869; 1982. Plants can be a direct fuel source. Biologist 29, 145–148.

    Google Scholar 

  • Casadevall, E. 1981. Renewable hydrocarbon production by cultivation of the green alga Botryococcus braunii. See Chartier Palz, 1981, pp. 95–102.

    Google Scholar 

  • Chartier, P. and Palz, W. 1981. Energy from biomass. Series E. Vol. 1. D. Reidel Publ., Dordrecht, Holland.

    Book  Google Scholar 

  • Chen, Buchen. 1981. The development of biomass utilization in China. Biomass 1, 39–46.

    Article  CAS  Google Scholar 

  • CIQA. 1978. Guayule. CIQA Press, Aldamo Ote 351, Saltillo, Mexico.

    Google Scholar 

  • COMES, 1980. Etude et Recommandations pour l’exploitation de l’ energie-vert. Comite Biomasse-Energie. Commissariat a 1’ energie-solaire. 2.08 rue Raymond-Losserand, 75014 Paris, France.

    Google Scholar 

  • Connolly, J.S., ed. 1981. Photochemical conversion and storage of solar energy. Academic Press, N.Y.

    Google Scholar 

  • Coombs, J. 1980. Renewable sources of energy (carbohydrates). Outlook Agric. 10, 235–245.

    Google Scholar 

  • Coombs, J. and Hall, D.O. 1983. Energy and biotechnology, in Biotechnology - Principals and Applications. I.J. Higgins, Ed. Blackwell Sci. Publ., Oxford (In press).

    Google Scholar 

  • Earl, D.E. 1975. Forest energy and economic development. Clarendon Press, Oxford.

    Google Scholar 

  • Experientia (Special Issue). 1982. New trends in research and utilization of solar energy through biological systems. Vol. 38, pp. 1–66 and 145–228.

    Google Scholar 

  • Ghate, P.B. 1979. Biogas: A Decentralised Energy System. A Pilot Investigation Project. Economic and Political Weekly (Bombay) July 7, 1979, pp. 1132–6.

    Google Scholar 

  • Grundy, T. 1980. Put the Alcohol in your Tank–Zimbabwe Style. Africa Business, 23 July 1980. pp. 18–19, London, U.K.

    Google Scholar 

  • Hall, D.O. 1979. Solar energy use through biology–past, present and future, Solar Energy 22, 307–318; 1981. Solar energy through biology: Fuel for the Future. In: Advances in Food Producing Systems for Arid and Semi-arid Lands. Manassah, J.T. and Briskey, E.J., eds. Academic Press, N.Y., pp. 105137; 1982, J. Roy. Soc. Arts 130, 457–471.

    Google Scholar 

  • Hall, D.O. 1980. Renewable Resources (hydrocarbons). Outlook Agric. 10, 246–254.

    Google Scholar 

  • Hall, D.O. 1981. Put a sunflower in your tank. New Scientist 89, 524–526.

    Google Scholar 

  • Hall, D.O. 1982(a). Alcohol and Hot air in Zimbabwe. Earthscan Bull. (2), 9. Earthscan, London W1P ODR, U.K.

    Google Scholar 

  • Hall, D.O. 1982(b). Food versus fuel, a world problem? In: Energy from Biomass; 2nd. EC Conference. Strub, A., Chartier, P. and Schleser, G., Eds., Applied Sci. Publ., London (In press).

    Google Scholar 

  • Hall, D.O., Adams, M.W.W., Gisby, P.E. and Rao, K.K. 1980. Plant power fuels hydrogen production. New Scientist 86, 72–75.

    CAS  Google Scholar 

  • Hall, D.O., Barnard, G.W. and Moss, P.A. 1982. Biomass for energy in the developing countries. Pergamon Press, Oxford.

    Google Scholar 

  • Hall, D.O. and Palz, W. 1982. Photochemical, photoelectrochemical and photobiological processes. Series D. Vol. 1. D. Reidel Publ., Dordrecht, Holland.

    Google Scholar 

  • Heden, K. 1982. Swedish energy forestry. Biomass 2, 1–3.

    Article  Google Scholar 

  • Hughes, D.E., Wheatley, B.I., Stafford, D.A., Baader, W., Lettinga, G., Nyns, E.J. Verstraete, W. and Wentworth, R.L. Eds., 1982. Anaerobic Digestion 1981. Elsevier, Amsterdam. Huxley, P.A. 1982. Agroforestry - a range of new opportunities? Biologist 29, 141–143.

    Google Scholar 

  • IEA. 1976 et seq. Biomass Conversion Technical Information Service. Nat’l Board Sci. Technol., Dublin 4, Ireland.

    Google Scholar 

  • IUCEM. 1981. Beyond the Energy Crisis, Opportunity and Challenge. Vol. 2. Third Intl. Conf. on Energy Use Management, Berlin (West). Pergamon Press, Oxford.

    Google Scholar 

  • Johnson, J. and Hinman, H.E., 1980. Oil and rubber from arid lands.

    Google Scholar 

  • Science 208, 460–464; 1981, see BioEnergy Council, p. 156. King, G. 1982. Biofuels. Renewable Energy News, No. 4. ETSU, Harwell, Didcot, U.K.

    Google Scholar 

  • Kingsolver, B.E. 1982. Euphorbia lathyrus reconsidered–its potential as an energy crop in arid lands. Biomass 2, 281–298.

    Article  Google Scholar 

  • Kovarik, B. 1982. Fuel alcohol-energy and environment in a hungry world. Earthscan, London W1P ODR, U.K.

    Google Scholar 

  • Lima Acioli, J. 1981. The alternative energy program in Brazil. Renewable Energy Rev. J. 3, 1–10.

    Google Scholar 

  • Lipinsky, E.S. 1981. Chemicals from biomass: petrochemical substitution options. Science 212, 1465–1471.

    Article  PubMed  CAS  Google Scholar 

  • Lipinsky, E.S., McClure, T.A., Kaesovich, S., Otis, J.L., Wagner, C.K., Trayser, D.A., and Applebaum, H.R. 1981. Systems studies of animal fats and vegetable oils for use as substitute and emergency diesel fuels. Report to US-Dept. of Energy, Washington, D.C. 20545, USA.

    Google Scholar 

  • Ministry of Industry and Commerce, 1981. Assessment of Brazil’s Alcohol Program, Ministry of Industry Commerce, Secretariat of Industrial Technology, Brasilia, Brazil.

    Google Scholar 

  • Moore, P.D. 1982. Plants and the paeleoatmosphere. J. Geol. Soc. London, Vol. 140, (In press).

    Google Scholar 

  • Moss, P.A. and Hall, D.O. 1982. Biomass for energy in Europe. Intl. J. Solar Energy 1 (In press).

    Google Scholar 

  • Moss, R.P. and Morgan, W.B. 1981. Fuelwood and Rural Energy, Pro-

    Google Scholar 

  • duction and Supply in the Humid Tropics. Natural Resources

    Google Scholar 

  • and Environment Series, Vol. 4, UN University Press, Tokyo. Nair, P.K.R. 1980. Agroforestry species - a crop sheets manual. Intl. Council Research Agroforestry, P.O. Box 30677, Nairobi, Kenya.

    Google Scholar 

  • NAS. 1981(a). Firewood crops; Shrub and Tree Species for Energy

    Google Scholar 

  • Production. Natl. Acad. Sci. USA, Washington, DC 20418, USA. NAS. 1981(b) Food, fuel and fertilizer from organic wastes. Natl.

    Google Scholar 

  • Acad. Sci. USA, Washington, DC 20418, USA.

    Google Scholar 

  • Neenan, M. and Lyons, G., eds. 1980. Production of Energy from Short Rotation Forestry. Oak Park Research Centre, Carlow, Ireland.

    Google Scholar 

  • OTA, 1980. Energy from Biological Processes. Office of Technology

    Google Scholar 

  • Assessment, U.S. Congress, Washington, DC 20510, USA.

    Google Scholar 

  • Palz, W. and Chartier, P. 1980. Energy from Biomass in Europe.

    Google Scholar 

  • Applied Sci. Publ., London.

    Google Scholar 

  • Palz, W., Chartier, P. and Hall, D.O. eds., 1981. Energy from

    Google Scholar 

  • Biomass. Applied Sci. Publ., London.

    Google Scholar 

  • Pearce, J. 1981. The Common Agricultural Policy. Routledge Kegan Paul, London.

    Google Scholar 

  • Perez-Blanco, H, and Hannon, B. 1982. Net energy analysis of methanol and ethanol production. Energy 7, 267–280. Pimentel, D. and Pimentel, M. 1979. Food, Energy and Society. Edward Arnold Publ., London.

    Google Scholar 

  • Rabson, R. and Rogers, P. 1981. The role of fundamental biological research in developing future biomass technologies. Biomass 1, 17–38.

    Article  Google Scholar 

  • Reddy, A. K. N. 1981. An Indian village agricultural ecosystem-case study of Ungra village. II. Discussion. Biomass 1, 77–88.

    Google Scholar 

  • Smil, V. 1982. Chinese biogas program sputters. Soft Energy Notes 5, 88–90.

    Google Scholar 

  • Sonalysts, Inc. 1981. Assessment of Plant Derived Hydrocarbons. Report to U.S. Dept. Energy, Washington, D.C. 20545, USA.

    Google Scholar 

  • Stafford, D.A., Wheatley, B.I. and Hughes, D.E. 1980. Anaerobic Digestion. Applied Sci. Publ., London.

    Google Scholar 

  • Steinbeck, K. 1981. Short rotation forestry as a biomass source. In: Energy from Biomass, Palz, W., Chartier, P. and Hall, D.O., Eds., Applied Sci. Publ., London. pp. 163–171.

    Google Scholar 

  • Stewart, G.A. et al. 1982. Potential for Production of hydrocarbon fuels from crops in Australia. CSIRO Div. Chem. Tech., Canberra, Australia.

    Google Scholar 

  • TERI. 1982. Biogas Handbook. Tata Energy Res. Inst., Bombay, 400023, India.

    Google Scholar 

  • Trindade; S.G. 1981. Energy crops–the case of Brazil. See Palz et al., 1981, pp. 59–74.

    Google Scholar 

  • TRW. 1982. Energy balances in the production and end-use of alcohol derived from biomass, Report to U.S. Dept. Energy, Washington, D.C. 20545, USA.

    Google Scholar 

  • UK-ISES. 1976. Solar energy: a UK assessment. Chap. 9. UK-ISES Publ. 19 Albemarle St., London WIX 4BS, UK.

    Google Scholar 

  • Unasylva. 1981. Vol. 33, issue no. 131. Wood Energy Special Edition 1, FAO, Rome 00100, Italy.

    Google Scholar 

  • UN-ESCAP. 1981. Renewable Sources of Energy. Vol. H. Biogas. ESCAP/ TCDC, UN Bldg., Bangkok 2, Thailand.

    Google Scholar 

  • Wittwer, S.H. 1982. Carbon dioxide and crop productivity. New Scientist 95, 233.

    Google Scholar 

  • World Bank, 1980. Energy in the developing countries. World Banc, Washington, DC 20433, USA.

    Google Scholar 

  • Zaborsky, O.R. ed. 1981. Handbook of Biosolar Resources. Vol. II Resource Materials. CRC Press, Boca Raton, Florida.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hall, D.O. (1983). Biomass for Energy — Fuels Now and in the Future. In: Côté, W.A. (eds) Biomass Utilization. NATO Advanced Science Institutes Series, vol 67. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0833-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0833-2_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0835-6

  • Online ISBN: 978-1-4757-0833-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics