Skip to main content

Physiology and Genetics of C4-Dicarboxylate Transport in Rhodobacter capsulatus

  • Chapter
Molecular Biology of Membrane-Bound Complexes in Phototrophic Bacteria

Part of the book series: FEMS Symposium ((FEMSS))

Abstract

Of those carbon sources traditionally used in studies on purple non-sulphur bacteria, the C4-dicarboxylic acids malate and succinate have long been known to be particularly effective in promoting fast growth rates and producing high cell yields under both photo- and chemoheterotrophic growth conditions (Stahl and Sojka, 1973). In Rhodobacter capsulatus, the iron-sulphur centre associated with succinate dehydrogenase is in redox equilibrium with the quinone pool (Zanonni and Ingledew, 1983), so that in addition to providing cell carbon, succinate can also act as a direct electron donor. Alternatively, under different circumstances, the reduction of fumarate to succinate may act as a redox poising mechanism for the removal of excess reducing equivalents (McEwan et al., 1985).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ames, G. F.-L., 1988, Structure and mechanism of bacterial periplasmic transport systems, J. Bioenerg. Biomembr., 20: 1.

    Article  PubMed  CAS  Google Scholar 

  • Colbeau, A., Godfroy, A., and Vignais, P.M., 1986, Cloning of DNA fragments carrying hydrogenase genes of Rhodopseudomonas capsulata, Biochemie., 68: 147.

    Article  CAS  Google Scholar 

  • Elferink, M.G.L., Hellingwerf, K.J., van Belkum, F.J., Poolman, B., and Konings, W.N., 1984, Direct interaction between linear electron transfer chains and solute transport systems in bacteria, FEMS Microbiol Letts., 21: 293.

    Article  CAS  Google Scholar 

  • Finan, T.M., Wood, J.M., and Jordan., D.C., 1981, Succinate transport in Rhizobium leauminosarum, J. Bacteriol., 148: 193.

    PubMed  CAS  Google Scholar 

  • Gibson, J., 1975, Uptake of C4-dicarboxylates and pyruvate by Rhodopseudomonas sphaeroides, J. Bacteriol., 123: 471.

    PubMed  CAS  Google Scholar 

  • Gutowski, S.J., and Rosenberg, H., 1975, Succinate uptake and related proton movements in Escherichia coli K12, Biochem. J., 152: 647.

    PubMed  CAS  Google Scholar 

  • Karzanov, V.V., and Ivanovsky, R.N., 1980, Sodium dependent succinate uptake in purple bacterium Ectothiorhodospira shaposhnikovii, Biochim. Biophys Acta., 598: 91.

    Article  PubMed  CAS  Google Scholar 

  • Jorgensen, P.A., Rothstein, S.J., and Reznikoff, W.S., 1979, A restriction enzyme cleavage map of Tn5 and location of a region encoding neomycin resistance. Mol. Gen. Genet., 177: 65.

    Article  PubMed  CAS  Google Scholar 

  • Kay, W.W., and Kornberg, H., 1969, Genetic control of the uptake of C4-dicarboxylic acids by Escherichia coli FEBS Letts., 3: 93.

    Article  CAS  Google Scholar 

  • Kelly, D.J., Richardson, D.J., Ferguson, S.J. and Jackson J.B., 1988, Isolation of transposon Tn5 insertion mutants of Rhodobacter capsulatus unable to reduce trimethylamine-N-oxide and dimethylsulphoxide, Arch. Microbiol., 150: 138.

    Article  CAS  Google Scholar 

  • Lo, T.C.Y., and Sanwal, B.D., 1975, Genetic analysis of mutants of Escherichia coli defective in dicarboxylate transport, Mol. Gen. Genet., 140: 303.

    PubMed  CAS  Google Scholar 

  • McEwan, A.G., Cotton, N.P.J., Ferguson, S.J., and Jackson, J.B., 1985, The role of auxiliary oxidants in the maintenance of a balanced redox poise for photosynthesis in bacteria, Biochim. Biophys. Acta., 810: 140.

    Article  CAS  Google Scholar 

  • Pirt, S.J., 1975, “Principles of Microbe and Cell Cultivation”. Blackwell. Oxford.

    Google Scholar 

  • Ronson, C.W., Astwood, P.M., and Downie, J.A., 1984, Molecular cloning and genetic organisation of C4dicarboxylate transport genes from Rhizobium lequminosarum, J.Bacteriol., 160: 903.

    PubMed  CAS  Google Scholar 

  • Stahl, C.L., and Sojka, G.A., 1973, Growth of Rhodopseudomonas capsulata on L- and D- malic acid, Biochim. Biophys. Acta., 299: 241.

    Article  Google Scholar 

  • Weaver, P.F., Wall, J.D., and Gest, H., 1975, Characterisation of Rhodopseudomonas capsulata, Arch. Microbiol., 105: 207.

    Article  PubMed  CAS  Google Scholar 

  • Willison, J.C., 1988, Pyruvate and acetate metabolism in the photosynthetic bacterium Rhodobacter capsulatus J. Gen. Microbiol., 134: 2429.

    CAS  Google Scholar 

  • Zannoni, D., and Ingledew, W.J., 1983, A functional characterisation of the membrane bound iron sulphur centres of Rhodopseudomonas capsulata, Arch. Microbiol., 135: 176.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kelly, D.J., Hamblin, M.J., Shaw, J.G. (1990). Physiology and Genetics of C4-Dicarboxylate Transport in Rhodobacter capsulatus . In: Drews, G., Dawes, E.A. (eds) Molecular Biology of Membrane-Bound Complexes in Phototrophic Bacteria. FEMS Symposium. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0893-6_53

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0893-6_53

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0895-0

  • Online ISBN: 978-1-4757-0893-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics