Skip to main content

Mechanisms in Vapour Epitaxy of Semiconductors

  • Chapter
Crystal Growth

Abstract

Epitaxial growth may be achieved by a variety of techniques, e.g. solution, flux, gel, molecular beam, and vapour. Vapour phase growth is by far the most widely used technique for semiconductors. It consists of oriented crystal growth of a material transported from the gas phase onto a suitable solid substrate. Strictly speaking, vapour phase growth should refer to growth due to condensation of the material from its own vapours, as in an evaporation-condensation process. However, the term is commonly used to describe all epitaxial growth processes involving transport from the gas phase, whether the gaseous medium actually contains vapours of the crystallizing material or simply a mixture of gaseous reactants capable of undergoing chemical conversion at the solid surface to yield the epitaxial layer. In fact, the most commonly employed techniques for semiconductor epitaxy correspond to the latter case, where a gaseous compound or combination of compounds is transported to the vicinity of the solid surface, at which point a chemical reaction occurs which results in formation and deposition of the semiconductor material. Although such a process is more correctly called gas phase epitaxy, the term vapour epitaxy is in widespread use and will be used here also.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. A. KUROV, Soviet Phys.-Solid State, 3, 1512 (1962).

    Google Scholar 

  2. E. I. GIVARGIZOV, Soviet Phys.-Solid State, 6, 1415 (1964).

    Google Scholar 

  3. S. E. MAYER and D. E. SHEA, J. Electrochem. Soc., 111, 550 (1964).

    Article  Google Scholar 

  4. D. W. SHAW, J. Electrochem. Soc., 113, 905 (1966).

    Google Scholar 

  5. K. L. DENBIGH, Chemical Reactor Theory, p. 29. Cambridge Univ. Press, London (1965).

    Google Scholar 

  6. W. E. BAKER and D. M. J. COMPTON, IBM J. Res. Develop., 4, 269 (1960).

    Article  Google Scholar 

  7. W. E. BAKER and D. M. J. COMPTON, IBM J. Res. Develop., 4, 275 (1960).

    Article  Google Scholar 

  8. F. V. WILLIAMS, J. Electrochem. Soc.. 111, 887 (1964).

    Article  Google Scholar 

  9. W. H. SHEPHERD, J. Electrochem. Soc.. 115, 652 (1968).

    Article  Google Scholar 

  10. V. F. DORFMAN and M. S. BELOKON’, Growth of Crystals, Vol. 8, p. 128. Consultants Bureau, New York and London (1969).

    Google Scholar 

  11. V. J. SILVESTRI, J. Electrochem. Soc., 116, 81 (1969).

    Article  Google Scholar 

  12. L. A. LAUKMANIS and I. A. FELTYN, Izv. Akad. Nauk. SSSR, Neorg. Mater., 4, 1275 (1968).

    Google Scholar 

  13. E. G. BYLANDER, J. Electrochem. Soc., 109, 1171 (1962).

    Article  Google Scholar 

  14. D. W. SHAW, Proc. 1968 Intern. Sym. on GaAs, p. 50. Institute of Phys. and Phys. Soc., London (1969).

    Google Scholar 

  15. A. E. BLAKESLEE, Trans. Met. Soc. AIME, 245, 577 (1969).

    Google Scholar 

  16. D. J. DUMIN, Rev. Sci. Instr., 38, 1107 (1967).

    Article  ADS  Google Scholar 

  17. R. R. MONCHAMP, W. J. McALEER and P. I. POLLAK, J. Electrochem. Soc., 111, 880 (1964).

    Article  Google Scholar 

  18. D. W. SHAW, J. Electrochem. Soc., 117, 683 (1970).

    Article  Google Scholar 

  19. F. C. EVERSTEYN, P. J. W. SEVERIN, C. H. D. v. d. BREKEL and H. L. PEEK, J. Electrochem. Soc., 117, 925 (1970).

    Article  Google Scholar 

  20. R. TAKAHASHI, K. SUGAWARA, Y. NAKAZAWA and Y. KOGA, Chemical Vapor Deposition, p. 695. Electrochem. Soc., New York (1970).

    Google Scholar 

  21. L. L. BIRCUMSHAW and A. C. RIDDIFORD, Quarterly Revs. (London). 6, 157 (1952).

    Article  Google Scholar 

  22. A. REISMAN and M. BERKENBLIT, J. Electrochem. Soc., 113, 146 (1966).

    Article  Google Scholar 

  23. A. S. GROVE, Physics and Technology of Semiconductor Devices, John Wiley and Sons. New York (1967).

    Google Scholar 

  24. G. EHRLICH and F. G. HUDDA, J. Chem. Phys., 44, 1039 (1966).

    Article  ADS  Google Scholar 

  25. B. A. JOYCE, J. Cryst. Growth, 3,4, 43 (1968).

    Article  ADS  Google Scholar 

  26. D. R. STULL and G. C. SINKE, Thermodynamic Properties of the Elements, American Chemical Society, Washington (1956).

    Google Scholar 

  27. F. ROSSINI, D. WAGMAN, W. EVANS, S. LEVINE and I. JAFFE, National Bureau of Standards Circular 500 (1952).

    Google Scholar 

  28. D. R. STULL, ed., JANAF Thermochemical Tables, Dow Chemical Co., Midland, Mich. (1965).

    Google Scholar 

  29. K. K. KELLEY, U.S. Bur. Mines Bull. 477 (1950).

    Google Scholar 

  30. J. P. COUGHLIN, U.S. Bur. Mines Bull. 542 (1954).

    Google Scholar 

  31. K. K. Kelley, U.S. Bur. Mines Bull. 584 (1960).

    Google Scholar 

  32. K. K. KELLEY and E. G. KING, U.S. Bur. Mines Bull. 592 (1961).

    Google Scholar 

  33. A. GLASSNER, Thermochemical Properties of the oxides, Fluorides, and Chlorides to 2500°K., U.S. Atomic Energy Commission, ANL5750 (1960).

    Google Scholar 

  34. L. BREWER, L. A. BROMLEY, P. W. GILES and N. L. LOFGREN, The Chemistry and Metallurgy of Miscellaneous Materials (L. L. Quill, ed.). McGraw-Hill, New York (1960).

    Google Scholar 

  35. O. KUBASCHEWSKI and E. L. Evans, Metallurgical Thermochemistry, Pergamon Press, London (1958).

    Google Scholar 

  36. J. H. E. JEFFES, J. Cryst. Growth, 3, 4, 13 (1968).

    Article  ADS  Google Scholar 

  37. R. F. LEVER, IBM J. Res. Develop., 8, 460 (1964).

    Article  Google Scholar 

  38. D. T. J. HURLE and J. B. MULLIN, J. Phys. Chem. Solids, Suppl. No. 1, 241 (1967).

    Article  Google Scholar 

  39. W. B. WHITE, S. M. JOHNSON and G. B. DANTZIG, J. Chem. Phys., 28, 751 (1958).

    Article  ADS  Google Scholar 

  40. L. M. NAPHTALI, Ind. Eng. Chem., 53, 387 (1961)

    Article  Google Scholar 

  41. D. R. CRUISE, J. Phys. Chem., 68, 3797 (1964).

    Article  Google Scholar 

  42. S. H. STOREY and F. VAN ZEGGEREN, Can. J. Chem. Eng., 42, 54 (1964).

    Article  Google Scholar 

  43. D. A. FRANK-KAMENETSKII, Diffusion and Heat Exchange in Chemical Kinetics (translated by N. Thon). Princeton University Press, Princeton, New Jersey (1955).

    Google Scholar 

  44. O. A. HOUGEN and K. M. WATSON, Chemical Process Principles, III, Kinetics and Catalysis, John Wiley and Sons, New York (1947).

    Google Scholar 

  45. F. A. KUZNETSOV and V. I. BELYI, J. Electrochem. Soc., 117, 785 (1970).

    Article  Google Scholar 

  46. R. W. ANDREWS, D. M. RYNNE and E. G. WRIGHT, Solid State Technol., 12, 61 (1969).

    Article  Google Scholar 

  47. J. E. MAY, J. Electrochem. Soc., 112, 710 (1965).

    Article  Google Scholar 

  48. E. R. GILLILAND, Ind. Eng. Chem., 26, 681 (1934).

    Article  Google Scholar 

  49. J. H. ARNOLD, Ind. Eng. Chem., 22, 1091 (1930).

    Article  Google Scholar 

  50. J. O. HIRSCHFELDER, C. F. CURTISS and R. B. BIRD, Molecular Theory of Gases and Liquids, p. 538. John Wiley and Sons, New York (1954).

    MATH  Google Scholar 

  51. C. N. SATTERFIELD and T. K. SHERWOOD, The Role of Diffusion in Catalysis, Addison-Wesley, Reading, Mass (1963).

    Google Scholar 

  52. T. O. SEDGWICK, J. Electrochern. Soc., 111, 1381 (1964).

    Article  Google Scholar 

  53. W. RUNYAN, Semiconductor Silicon (R. R. Haberecht and E. L. Kern, eds.), p. 169. Electrochemical Society, New York (1969).

    Google Scholar 

  54. S. NIELSEN and G. J. RICH, Microelec. and Reliab., 3, 165, 171 (1964).

    Article  Google Scholar 

  55. C. H. LI, Phys. Stat. Sol., 15, 419 (1966).

    Article  ADS  Google Scholar 

  56. M. E. JONES, Reactivity of Solids (R. W. Roberts and R. C. Devries, eds.), p. 433. John Wiley and Sons, New York (1969).

    Google Scholar 

  57. W. RIEDL, Przegl. Elektron., 6, 323 (1965).

    Google Scholar 

  58. M. J. HARPER and T. J. LEWIS, United Kingdon Ministry of Aviation Report ERDE 6/M/66, Great Britain Explosives Research and Development Establishment, Waltham Abbey, England (1966).

    Google Scholar 

  59. L. P. HUNT and E. SIRTL, Chemical Vapor Deposition (J. M. Blocher, Jr. and J. C. Withers, eds.), p. 3. Electrochemical Society, New York (1970).

    Google Scholar 

  60. D. J. ASHEN, G. C. BROMBERGER and T. J. LEWIS, J. Appl. Chem., 18, 348 (1968).

    Article  Google Scholar 

  61. W. STEINMAIER, Philips Res. Rep., 18, 75 (1963).

    Google Scholar 

  62. H. SEKI and H. ARAKI, Denki Kagaku, 34, 397 (1966).

    Google Scholar 

  63. E. WOLF and R. TEICHMANN, Z. Chem., 2, 343 (1962).

    Article  Google Scholar 

  64. H. C. THEUERER, J. Electrochem. Soc., 108, 649 (1961).

    Article  Google Scholar 

  65. E. G. BYLANDER, J. Electrochem. Soc., 109, 1171 (1962).

    Article  Google Scholar 

  66. S. E. BRADSHAW, Int. J. Electronics, 21, 205 (1966).

    Article  Google Scholar 

  67. S. K. TUNG, J. Electrochem. Soc., 112, 436 (1965).

    Article  Google Scholar 

  68. S. MENDELSON, J. Appl. Phys., 35, 1570 (1964).

    Article  ADS  Google Scholar 

  69. T. L. CHU, J. Electrochem. Soc., 113, 717 (1966).

    Article  Google Scholar 

  70. W. H. SHEPHERD, J. Electrochem. Soc., 112, 988 (1965).

    Article  Google Scholar 

  71. S. E. BRADSHAW, Int. J. Electronics, 23, 381 (1967).

    Article  ADS  Google Scholar 

  72. P. C. RUNDLE, Int. J. Electronics, 24, 405 (1968).

    Article  Google Scholar 

  73. K. SUGAWARA, R. TAKAHASHI, H. TOCHIKUHO and Y. KOGA, Chemical Vapor Deposition (J. M. Blocher, Jr. and J. C. Withers, eds.), p. 713. Electrochemical Society, New York (1970).

    Google Scholar 

  74. I. M. SKVORTSOV and V. V. NIKOLAEVA, Izv. Akad. Nauk. SSSR, Neorg. Mat., 6, 1003 (1970).

    Google Scholar 

  75. E. G. ALEXANDER, J. Electrochem. Soc., 114, 65C (1967).

    Google Scholar 

  76. J. M. CHARIG and B. A. JOYCE, J. Electrochem. Soc., 109, 857 (1962).

    Article  Google Scholar 

  77. A. M. STEIN, J. Electrochem. Soc., 111, 483 (1964).

    Article  Google Scholar 

  78. R. C. BRACKEN, Chemical Vapor Deposition (J. M. Blocher, Jr. and J. C. Withers, eds.), p. 73. Electrochemical Society, New York (1970).

    Google Scholar 

  79. B. A. JOYCE and R. R. BRADLEY, J. Electrochem. Soc., 110, 1235 (1963).

    Article  Google Scholar 

  80. E. I. GIVARGIZOV, Sov. Phys.-Solid State, 5, 840 (1963).

    Google Scholar 

  81. N. KYLE and J. J. GROSSMAN, J. Electrochem. Soc., 110, 184C (1963).

    Google Scholar 

  82. N. N. SHEFTAL and E. I. GIVARGIZOV, Sov. Phys. Cryst., 9, 576 (1965).

    Google Scholar 

  83. K. J. MILLER and M. J. GRIECO, J. Electrochem. Soc., 110, 1252 (1963).

    Article  Google Scholar 

  84. S. IIDA and Y. SUGITA, Japan. J. A ppl. Phys., 3 163 (1964)

    Article  ADS  Google Scholar 

  85. S. IIDA, Japan. J. Appl. Phys., 5, 138 (1966).

    Article  ADS  Google Scholar 

  86. V. F. DORFMAN, I. P. KISLYAKOV and K. A. BOLSHAKOV, Russ. J. Phys. Chem.. 39, 526 (1965).

    Google Scholar 

  87. G. A. KUROV, Soviet Phys.-Solid State, 5, 1833 (1964).

    Google Scholar 

  88. M. S. SELTZER, N. ALBON, B. PARIS and R. C. HIMES, J. Electrochem. Soc., 114, 102 (1967).

    Article  Google Scholar 

  89. D. EFFER, J. Electrochern. Soc.. 111, 814 (1964).

    Article  Google Scholar 

  90. R. C. TAYLOR, J. Electrochem. Soc. 114, 410 (1967).

    Article  Google Scholar 

  91. KH. A. MAGOMEDOV and N. N. EFTAL, Sov. Phys. Cryst., 9, 756 (1965).

    Google Scholar 

  92. A. BOUCHER and L. HOLLAN, J. Electrochem. Soc., 117, 932 (1970).

    Article  Google Scholar 

  93. W. SHAW, J. Electrochem. Soc., 115, 405 (1968).

    Article  Google Scholar 

  94. D. W. SHAW, J. Cryst. Growth. 8, 117 (1971).

    Article  ADS  Google Scholar 

  95. H. SEKI, K. MORIYAMA, I. ASAKAWA and S. HOERE, Japan. J. Appl. Phys.. 7, 1324 (1965).

    Article  ADS  Google Scholar 

  96. R. E. EWING and P. E. GREENE, J. Electrochem. Soc., 111, 1267 (1964).

    Article  Google Scholar 

  97. D. W. SHAW, J. Electrochem. Soc., 115, 777 (1968).

    Article  Google Scholar 

  98. B. A. JOYCE and R. R. BRADLEY, Phil. Mag., 14, 289 (1966).

    Article  ADS  Google Scholar 

  99. G. R. BOOKER and B. A. JOYCE, Phil. Mag., 14, 301 (1966).

    Article  ADS  Google Scholar 

  100. B. A. JOYCE, R. R. BRADLEY and G. R. BOOKER, Phil. Mag., 15, 1167 (1967).

    Article  ADS  Google Scholar 

  101. E. B. WATTS, R. R. BRADLEY, B. A. JOYCE and G. R. BOOKER, Phil. Mag., 17, 1 163 (1968).

    Article  Google Scholar 

  102. B. A. JOYCE, R. R. BRADLEY, E. B. WATTS and G. R. BOOKER, Phil. Mag., 19, 403 (1969).

    Article  ADS  Google Scholar 

  103. J. J. GROSSMAN, J. Electrochem. Soc., 110, 1065 (1963).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1974 Springer Science+Business Media New York

About this chapter

Cite this chapter

Shaw, D.W. (1974). Mechanisms in Vapour Epitaxy of Semiconductors. In: Goodman, C.H.L. (eds) Crystal Growth. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-1272-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-1272-8_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-1274-2

  • Online ISBN: 978-1-4757-1272-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics