Skip to main content

Comparison of Electrical Oscillations in Neurons with Induced or Spontaneous Cellular Rhythms due to Biochemical Regulation

  • Chapter
Induced Rhythms in the Brain

Part of the book series: Brain Dynamics ((BD))

  • 216 Accesses

Abstract

Biological rhythms can be classified broadly into different categories, according to the way in which they occur. Thus, they can arise spontaneously in a given set of experimental conditions, as exemplified by rhythmic activity in nodal tissues of the heart, or they can be driven by some external periodic process. In the latter case, the biological rhythm is generally entrained in a certain range at the frequency of the forcing stimulus. Oscillations can also occur as a result of a change in external conditions that brings about the transition from a stable steady state to an oscillatory regime. The latter situations relate to different sorts of induced rhythms; indeed (see the introductory chapter by Bullock), induced rhythms are either triggered from silence or modulated from an ongoing rhythm by an external event, transient or sustained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams WB, Benson JA (1985): The generation and modulation of endogenous rhythmicity in the Aplysia bursting pacemaker neurone R15. Prog Biophys Mol Biol 46:1–49

    Article  Google Scholar 

  • Adams WB, Benson JA (1989): Rhythmic neuronal burst generation: experiment and theory. In: Cell to Cell Signalling: From Experiments to Theoretical Models, Goldbeter A, ed. London: Academic Press, pp 29–45

    Google Scholar 

  • Aihara K, Matsumoto G (1982): Temporally coherent organization and instabilities in squid giant axon. J Theor Biol 95:697–720

    Article  Google Scholar 

  • Babloyantz A, Destexhe A (1986): Low-dimensional chaos in an instance of epilepsy. Proc Natl Acad Sci USA 83:3513–3517

    Article  Google Scholar 

  • Berridge MJ, Galione A (1988): Cytosolic calcium oscillators. FASEB J 2:3074–3082

    Google Scholar 

  • Berridge MJ, Rapp PE (1979): A comparative survey of the function, mechanism and control of cellular oscillations. J Exp Biol 81:217–279

    Google Scholar 

  • Cazalis M, Dayanithi G, Nordmann JJ (1985): The role of patterned burst and interburst interval on the excitation-coupling mechanism in the isolated rat neural lobe. J Physiol 369:45–60

    Google Scholar 

  • Cuthbertson KSR (1989): Intracellular calcium oscillators. In: Cell to Cell Signalling: From Experiments to Theoretical Models, Goldbeter A, ed. London: Academic Press, pp 435–447.

    Google Scholar 

  • Decroly O, Goldbeter A (1982): Birhythmicity, chaos, and other patterns of temporal self-organization in a multiply regulated biochemical system. Proc Natl Acad Sci USA 79: 6917–6921

    Article  Google Scholar 

  • Decroly O, Goldbeter A (1987): From simple to complex oscillatory behaviour: analysis of bursting in a multiply regulated biochemical system. J Theor Biol 124:219–250

    Article  Google Scholar 

  • Devreotes PN (1982): Chemotaxis. In: The Development of Dictyostelium discoideum, Loomis WF, ed. New York: Academic Press, pp 117–168

    Google Scholar 

  • Dupont G, Berridge M J, Goldbeter A (1991): Signal-induced Ca2+ oscillations: Properties of a model based on Ca2+-induced Ca2+ release. Cell Calcium 12:73–85

    Article  Google Scholar 

  • Durston AJ (1974): Pacemaker mutants of Dictyostelium discoideum. Dev Biol 38:308–319

    Article  Google Scholar 

  • Eckhorn R, Bauer R, Jordan W, Brosch M, Kruse W, Munk M, Reitboeck HJ (1988): Coherent oscillations: a mechanism of feature linking in the visual cortex? Multiple electrode and correlation analyses in the cat. Biol Cybern 60:121–130

    Article  Google Scholar 

  • Fitzhugh R (1961): Impulses and physiological states in theoretical models of nerve membranes. Biophys J 1: 445–466

    Article  Google Scholar 

  • Gadsby DC, Wit AL (1981): Electrophysiologic characteristics of cardiac cells and the genesis of cardiac arrhythmias. In: Cardiac Pharmacology. New York: Academic Press, pp 229–274

    Google Scholar 

  • Gerisch G, Malchow D, Roos W, Wick U (1979): Oscillations of cyclic nucleotide concentrations in relation to the excitability of Dictyostelium cells. J Exp Biol 81: 33–47

    Google Scholar 

  • Gerisch G, Wick U (1975): Intracellular oscillations and release of cyclic AMP from Dictyostelium cells. Biochem Biophys Res Commun 65:364–370

    Article  Google Scholar 

  • Glass L, Mackey MC (1988): From Clocks to Chaos: The Rhythms of Life. Princeton: Princeton University Press

    Google Scholar 

  • Goldbeter A (1990): Rythmes et chaos dans les systèmes biochimiques et cellulaires. Masson: Paris. (An English translation is to be published by Cambridge University Press under the title Rhythms and chaos in biochemical and cellular systems)

    Google Scholar 

  • Goldbeter A, Caplan SR (1976): Oscillatory enzymes. Annu Rev Biophys Bioeng 5: 449–476

    Article  Google Scholar 

  • Goldbeter A, Dupont G, Berridge MJ (1990): Minimal model for signal-induced Ca2+ oscillations and for their frequency encoding through protein phosphorylation. Proc Natl Acad Sci USA 87:1461–1465

    Article  Google Scholar 

  • Goldbeter A, Moran F (1988): Dynamics of a biochemical system with multiple oscillatory domains as a clue for multiple modes of neuronal oscillations. Eur Biophys J 15:277–287

    Article  Google Scholar 

  • Goldbeter A, Segel LA (1980): Control of developmental transitions in the cyclic AMP signaling system of Dictyostelium discoideum. Differentiation 17:127–135

    Article  Google Scholar 

  • Goldbeter A, Wurster B (1989): Regular oscillations in suspensions of a putatively chaotic mutant of Dictyostelium discoideum. Experientia 45:363–365

    Article  Google Scholar 

  • Gray CM, König P, Engel AK, Singer W (1989): Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties. Nature 338:334–337

    Article  Google Scholar 

  • Gray CM, Singer W (1989): Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex. Proc Natl Acad Sci USA 86:1698–1702

    Article  Google Scholar 

  • Guttman R, Lewis S, Rinzel J (1980): Control of repetitive firing in squid axon membrane as a model for a neuroneoscillator. J Physiol (Lond) 305:377–395

    Google Scholar 

  • Halloy J, Li YX, Martiel JL, Wurster B, Goldbeter A (1990): Coupling chaotic and periodic cells results in a period-doubling route to chaos in a model for cAMP oscillations in Dictyostelium suspensions. Phys Lett A 151:33–36 and 159 : 442

    Article  Google Scholar 

  • Hess B, Boiteux A (1971): Oscillatory phenomena in biochemistry. Annu Rev Biochem 40:237–258

    Article  Google Scholar 

  • Holden AV, Ed. (1986) Chaos. Manchester: Manchester University Press

    Google Scholar 

  • Holden AV, Winlow W, Haydon PG (1982): The induction of periodic and chaotic activity in a molluscan neurone. Biol Cybern 43:169–173

    Article  Google Scholar 

  • Holden AV, Yoda M (1981): Ionic channels density of an excitable membrane can act as bifurcation parameter. Biol Cybern 42:29–38

    Article  Google Scholar 

  • Huxley AH (1959): Ion movements during nerve activity. Ann N Y Acad Sci 81: 221—246

    Article  Google Scholar 

  • Jacob R (1990): Calcium oscillations in electrically non-excitable cells. Biochim Biophys Acta 1052:427–438

    Article  Google Scholar 

  • Jahnsen H, Llinás R (1984): Ionic basis for the electroresponsiveness and oscillatory properties of guinea-pig thalamic neurones in vitro. J Physiol (Lond) 349:227–247

    Google Scholar 

  • Johnston D, Brown TH (1984): Mechanism of neuronal burst generation. In: Electrophysiology of Epilepsy. New York: Academic Press, pp 277–301

    Google Scholar 

  • Knobil E (1980): The neuroendocrine control of the menstrual cycle. Rec Prog Horm Res 36:53–88

    Google Scholar 

  • Kuba K, Takeshita S (1981): Simulation of intracellular Ca2+ oscillation in a sympathetic neurone. J Theor Biol 93:1009–1031

    Article  Google Scholar 

  • Li YX, Goldbeter A (1989): Frequency specificity in intercellular communication: The influence of patterns of periodic signaling on target cell responsiveness. Biophys J 55:125–145

    Article  Google Scholar 

  • Li YX, Goldbeter A (1990): Frequency encoding of pulsatile signals of cyclic AMP based on receptor desensitization in Dictyostelium cells. J Theor Biol 146:355–367

    Article  Google Scholar 

  • Li YX, Halloy J, Martiel JL, Wurster B, Goldbeter A (1992): Suppression of chaos by periodic oscillations in a model for cyclic AMP signalling in Dictyostelium cells. Experientia (in press)

    Google Scholar 

  • Llinás R (1988): The intrinsic electrophysiological properties of mammalian neurons: a new insight into CNS function. Science 242:1654–1664

    Article  Google Scholar 

  • Markus M, Hess B (1984): Transitions between oscillatory modes in a glycolytic model system. Proc Natl Acad Sci USA 81: 4394–4398

    Article  Google Scholar 

  • Martiel JL, Goldbeter A (1985): Autonomous chaotic behaviour of the slime mould Dictyostelium discoideum predicted by a model for cyclic AMP signaling. Nature 313:590–592

    Article  Google Scholar 

  • Martiel JL, Goldbeter A (1987): A model based on receptor desensitization for cyclic AMP signaling in Dictyostelium cells. Biophys J 52:807–828

    Article  Google Scholar 

  • Meyer T, Stryer L (1988): Molecular model for receptor-stimulated calcium spiking. Proc Natl Acad Sci USA 85:5051–5055

    Article  Google Scholar 

  • Minorsky N (1962): Nonlinear Oscillations. Princeton: Van Nostrand

    Google Scholar 

  • Nicolis G, Prigogine I (1977): Self-Organization in Nonequilibrium Systems. From Dissipative Structures to Order through Fluctuations. New York: Wiley

    Google Scholar 

  • Olsen LF, Degn H (1985): Chaos in biological systems. Q Rev Biophys 18:165–225

    Article  Google Scholar 

  • Rapp PE (1987): Why are so many biological systems periodic? Prog Neurobiol 29:261–273

    Article  Google Scholar 

  • Rapp PE, Bashore TR, Martinerie JM, Albano AM, Mees AI (1989): Dynamics of brain electrical activity. Brain Topogr 2: 99–118

    Article  Google Scholar 

  • Rinzel J (1985): Excitation dynamics: insights from simplified membrane models. Fed Proc 44:2944–2946

    Google Scholar 

  • Rinzel J (1987): A formal classification of bursting mechanisms in excitable systems. Lect Notes Biomath 71: 267–281

    Article  Google Scholar 

  • Roschke J, BaĹźar E (1988): The EEG is not simple noise: strange attractors in intracranial structures. In: Dynamics of Sensory and Cognitive Processing in the Brain, BaĹźar E, ed. Berlin: Springer-Verlag

    Google Scholar 

  • Roschke J, BaĹźar E (1988): The EEG is not simple noise: strange attractors in intracranial structures. Springer Series in Brain Dynamics. 1: 203–216

    Article  Google Scholar 

  • Rose RM, Hindmarsh JL (1985): A model for a thalamic neuron. Proc R Soc Lond B 225:161–193

    Article  Google Scholar 

  • Rose RM, Hindmarsh JL (1989): The assembly of ionic currents in a thalamic neuron. III. The seven-dimensional model. Proc R Soc Lond B 237: 313–334

    Article  Google Scholar 

  • Selverston AI, Moulins M (1985): Oscillatory neural networks. Annu Rev Physiol 47: 29–48

    Article  Google Scholar 

  • Skarda CA, Freeman WJ (1987): How brain makes chaos in order to make sense of the world. Behav Brain Sci 10:161–195

    Article  Google Scholar 

  • Tsien RW, Kass RL, Weingart R (1979): Cellular and subcellular mechanisms of cardiac pacemaker oscillations. J Exp Biol 81: 205–215

    Google Scholar 

  • Whim MD, Lloyd PE (1989): Frequency-dependent release of peptide cotransmitters from identified cholinergic motor neurons in Aplysia. Proc Natl Acad Sci USA 86: 9034–9038

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Goldbeter, A. (1992). Comparison of Electrical Oscillations in Neurons with Induced or Spontaneous Cellular Rhythms due to Biochemical Regulation. In: Başar, E., Bullock, T.H. (eds) Induced Rhythms in the Brain. Brain Dynamics. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4757-1281-0_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-1281-0_18

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4757-1283-4

  • Online ISBN: 978-1-4757-1281-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics