Skip to main content

The Oxygen Free Radical System and Myocardial Dysfunction

  • Chapter
Advances in Myocardiology

Part of the book series: Advances in Myocardiology ((ADMY))

Abstract

The pathways for the metabolism of molecular oxygen involve one electron-transfer reaction with the subsequent production of reduced-oxygen intermediates. These reduced-oxygen intermediates include the superoxide anion (·O -2 ), hydrogen peroxide (H2O2), and the hydroxyl radical (·OH), which are highly reactive, short-lived species. Normally, intracellular enzyme systems that include superoxide dismutase, catalase, and glutathione peroxidase are responsible for “scavenging” these products of oxygen metabolism. However, in many pathological states such as inflammation, ischemia, and reperfusion, there is an increased production of these reduced-oxygen intermediates, which are capable of extensive tissue damage. It is the purpose of this symposium to examine, in depth, the role of oxygen free radical systems as mediators of myocardial dysfunction and expand our knowledge of myocardial ischemia, ischemia—reperfusion injury, and the inflammatory response of the myocardium.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fridovich, I. 1978. The biology of oxygen radicals. Science 201:875–888.

    Article  PubMed  CAS  Google Scholar 

  2. Pryor, W. A. 1976. The role of free radical reactions in biological systems. In: W. Pryor (ed.), Free Radicals in Biology. pp. 1–49. Academic Press, New York.

    Chapter  Google Scholar 

  3. Thomas, M. J., Mehl, K. S., and Pryor, W. A. 1978. The role of superoxide anion in the xanthine-oxidase induced autoxidation of linoleic acid. Biochem. Biophys. Res. Commun. 83:927–932.

    Article  PubMed  CAS  Google Scholar 

  4. Babior, B. M. 1978. Oxygen-dependent microbial killing by phagocytes. Parts I and II. N. Engl. J. Med. 298:659–668 and 732–725.

    Article  PubMed  CAS  Google Scholar 

  5. Klebanoff, J. J. 1980. Oxygen metabolism and the toxic properties of phagocytes. Ann. Intern. Med. 93:480–489.

    Article  PubMed  CAS  Google Scholar 

  6. Haber, F., and Weiss, J. 1934. The catalytic decomposition of hydrogen peroxide by ion salts. Proc. R. Soc. 147:332–351.

    Article  CAS  Google Scholar 

  7. Benon, H., Bielski, J., and Gebicki, J. M. 1977. Application of radiation chemistry to biology. In: W. Pryor (ed.), Free Radicals in Biology. Vol. 3, pp. 1–51. Academic Press, New York.

    Google Scholar 

  8. Demopoulos, H. G., Glamm, E. S., Seligman, M. L., Mitamura, J. A., and Ransohoff, J. 1979. Membrane perturbations in central nervous system injury: Theoretical basis for free radical damage. In: A. J. Popp, R. S. Bourke, L. R. Nelson, and H. K. Kimelberg (eds.), Neural Trauma. pp. 63–78. Raven Press, New York.

    Google Scholar 

  9. Demopoulos, H. B., Flamm, E. S., Pietronigro, D. D., and Seligman, M. L. 1980. The free radical pathology and the microcirculation in the major central nervous system disorders. Acta Physiol. Scand. Suppl. 492:91–119.

    PubMed  CAS  Google Scholar 

  10. Kontos, H. A., Wei, E. P., Dietrich, W. D., Navari, R. M., Povlishock, J. T., Ghatak, N. R., Ellis, E. F., Patterson, J. L. Mechanism of cerebral arteriolar abnormalities after acute hypertension. Am. J. Physiol. 240:H511–H527.

    Google Scholar 

  11. Wei, E. P., Kontos, H. A., Dietrich, W. D., Povlishock, J. T., and Ellis, E. F. 1981. Inhibition by free radical scavengers and by cyclooxygenase inhibitors of pial arteriolar abnormalities. Circ. Res. 48:95–103.

    Article  PubMed  CAS  Google Scholar 

  12. Dorfman, L. M., and Adams, G. E. 1973. Reactivity of hydroxyl free radicals in aqueous solutions. NSRDS NL35, No 46, United States Department of Commerce, National Bureau of Standards.

    Google Scholar 

  13. Kuehl, F. A., Humes, J. L., Ham, E. A., Egan, R. W., Dougherty, H. W. 1980. Inflammation: The role of peroxidase-derived products. Adv. Prostaglandin Thromb. Res. 6:77–86.

    CAS  Google Scholar 

  14. McCord, J. M. 1974 Free radicals and inflammation: Protection of synovial fluid by superoxide dismutase. Science 185:529–531.

    Article  PubMed  CAS  Google Scholar 

  15. Johnson, R. B., Keele, B. B., Misra, H. P., Lehmeyer, J. P., Webb, L. S., Baehner, R. L., Rajagopalan, K. V. 1975. The role of superoxide anion generation in phagocytic bacterial activity: Studies with normal and chronic granulomatous disease leukocytes. J. Clin. Invest. 55:1357–1372.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hess, M.L., Manson, N.H. (1985). The Oxygen Free Radical System and Myocardial Dysfunction. In: Harris, P., Poole-Wilson, P.A. (eds) Advances in Myocardiology. Advances in Myocardiology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-1287-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-1287-2_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-1289-6

  • Online ISBN: 978-1-4757-1287-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics