Skip to main content

Oxygen Radicals and Tissue Damage in Heart Hypertrophy

  • Chapter
Advances in Myocardiology

Part of the book series: Advances in Myocardiology ((ADMY))

Abstract

Cyanide-resistant respiration in heart homogenates supplemented with 1 mM NADH was greater in hypertrophied homogenates (60 days banding) with respect to control homogenates, particularly when the homogenates were incubated in 100% oxygen. The intermyofibrillar mitochondria from hypertrophied hearts produced more superoxide radicals than subsarcolemmal mitochondria, and both values were greater than in the unbanded group. H202 formation was more evident in the intact mitochondria prepared from hypertrophied hearts than in those of the control hearts. Moreover, the perfusion of isolated hearts in anoxic and reox-ygenated conditions caused a greater lipoperoxidative and functional damage at the mitochondrial level in hypertrophied hearts than in the control hearts. These results, correlated with the reduction in mitochondrial function found in the overloaded hearts, suggest an involvement of the reactive species of oxygen in the formation of cardiac damage induced by prolonged aortic banding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Halliwell, B. 1978. Biochemical mechanism accounting for the toxic action of oxygen on living organisms: The key role of superoxide dismutase. Cell Biol. Int. Rev. 2:113–128.

    Article  CAS  Google Scholar 

  2. Freeman, B. A., and Crapo, J. D. 1982. Biology of disease-free radicals and tissue injury. Lab. Invest. 47:412–426.

    PubMed  CAS  Google Scholar 

  3. Fridovich, I. 1975. Superoxide dismutase. Annu. Rev. Biochem. 44:147–159.

    Article  PubMed  CAS  Google Scholar 

  4. Forman, H. J., and Fisher, A. B. 1982. Antioxidant defenses. In: D. L. Gilbert (ed.), Oxygen and Living Processes: An Interdisciplinary Approach. pp. 235–248. Springer-Verlag, New York.

    Google Scholar 

  5. Hughson, M., Balentine, J. D., and Daniell, H. B. 1977. The ultrastructural pathology of hyperbaric oxygen exposure: Observations on the heart. Lab. Invest. 37:516–525.

    PubMed  CAS  Google Scholar 

  6. Nohl, H., Hegner, D., and Summer, K. H. 1981. The mechanism of toxic action of hyperbaric oxygenation on the mitochondria of rat heart cells. Biochem. Pharmacol. 30:1753–1757.

    Article  PubMed  CAS  Google Scholar 

  7. Guarnieri, C., Ferrari, R., Visioli, O., Caldarera, C. M., and Nayler, W. G. 1978. Effect of α-tocopherol on hypoxic perfused and reoxygenated rabbit heart muscle. J. Mol. Cell. Cardiol. 10:893–906.

    Article  PubMed  CAS  Google Scholar 

  8. Guarnieri, C., Flamigni, F., Ventura C., and Rossoni Caldarera, C. 1981. Inhibition of rat heart superoxide dismutase activity by diethyldithiocarbamate and its effect on mitochondrial function. Biochem. Pharmacol. 30:2174–2176.

    Article  PubMed  CAS  Google Scholar 

  9. Doroshow, J. H. 1983. Effect of anthracycline antibiotics on oxygen radical formation in rat heart. Canc. Res. 43:460–472.

    CAS  Google Scholar 

  10. Guarnieri, C., Flamigni, F., and Caldarera, C. M. 1980. Role of oxygen in the cellular damage induced by re-oxygenation of hypoxic heart. J. Mol. Cell. Cardiol. 12:797–808.

    Article  PubMed  CAS  Google Scholar 

  11. Shattock, M. J., Manning, A. S., and Hearse, D. J. 1982. Effects of hydrogen peroxide on cardiac function and post-ischaemic functional recovery in the isolated working rat heart. Pharmacology 24:118–122.

    Article  PubMed  CAS  Google Scholar 

  12. Williams, A. J., and Barrie, S. E. 1978. Temperature effects on the kinetics of calcium transport by cardiac mitochondria. Biochem. Biophys. Res. Commun. 84:89–93.

    Article  PubMed  CAS  Google Scholar 

  13. McMillin-Wood, J., Wolkowiez, P. E., Chu, A., Tate, C. A., Goldstein, M. A., and Entman, M. L. 1980. Calcium uptake by two preparations of mitochondria from heart. Biochim. Biophys. Acta 591:251–265.

    Article  PubMed  CAS  Google Scholar 

  14. Kuthan, H., Ullrich, V., and Estabrook, R. W. 1982. A quantitative test for superoxide radicals produced in biological systems. Biochem. J. 203:551–558.

    PubMed  CAS  Google Scholar 

  15. Loschen, G., Flohé, L., and Chance, B. 1971. Respiratory chain linked H>20>2 production in pigeon heart mitochondrial. FEBS Lett. 18:261–264.

    Article  PubMed  CAS  Google Scholar 

  16. Ohkawa, H., Ohishi, N., and Yagi, K. 1979. Assay for lipid peroxides in animal tissues by the thiobarbituric acid reaction. Anal. Biochem. 95:351–358.

    Article  PubMed  CAS  Google Scholar 

  17. Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:246–254.

    Article  Google Scholar 

  18. Hassan, H. M., and Fridovich, I. 1979. Regulation of the synthesis of superoxide dismutase in Escherichia coli. J. Biol. Chem. 252:7667–7672.

    Google Scholar 

  19. Palmer, J. W., Tandler, B., and Hoppel, C. L. 1977. Biochemical properties of subsarcolemmal and interfibrillar mitochondria isolated from rat cardiac muscle. J. Biol. Chem. 252:8731–8739.

    PubMed  CAS  Google Scholar 

  20. Wolkowiez, P. E., and McMillin-Wood, I. 1980. Respiration dependent calcium ion uptake by two preparations of cardiac mitochondria. Biochem. J. 186:257–266.

    Google Scholar 

  21. Hoppel, C. L., Tandler, B., Parland, W., Turkaly, J. S., and Albers, L. D. 1982. Hamster cardiomyopathy: A defect in oxidative phosphorylation in the cardiac interfibrillar mitochondria. J. Biol. Chem. 257:1540–1548.

    PubMed  CAS  Google Scholar 

  22. Turrens, J. F., Freeman, B. A., Levitt, J. C., and Crapo, J. D. 1982. The effect of hyperoxia on superoxide production by lung submitochondrial particles. Arch. Biochem. Biophys. 217:401–410.

    Article  PubMed  CAS  Google Scholar 

  23. Loschen, G., Azzi, A., and Flohé, L. 1973. Mitochondrial H>20>2 formation: Relationship with energy conservation. FEBS Lett. 33:84–88.

    Article  PubMed  CAS  Google Scholar 

  24. Freeman, B. A., and Crapo, J. D. 1981. Hyperoxia increases oxygen radical production in rat lungs and lung mitochondria. J. Biol. Chem. 256:10, 986–10, 992.

    Google Scholar 

  25. Nohl, H., and Hegner, D. 1978. Do mitochondria produce oxygen radicals in vivo? Eur. J. Biochem. 82:563–567.

    Article  PubMed  CAS  Google Scholar 

  26. Rabinowitz, M., and Zack, R. 1975. Mitochondria and cardiac hypertrophy. Circ. Res. 36:367–376.

    Article  PubMed  CAS  Google Scholar 

  27. Wikman-Coffelt, J., Parmley, W. W., and Mason, D. T. 1979. The cardiac hypertrophy process. Circ. Res. 45:697–707.

    Article  PubMed  CAS  Google Scholar 

  28. Moravec, J., Renault, G., and Hatt, P. Y. 1978. Alterations of mitochondrial function as detected in left ventricular myocardium of rats with acute aortic constriction. Basic Res. Cardiol. 73:535–550.

    Article  PubMed  CAS  Google Scholar 

  29. Nohl, H., Jordan, W., and Hegner, D. 1982. Mitochondrial formation of OH• radicals by an ubisemiquinone-dependent reaction: An alternative pathway to the iron-catalysed Haber—Weiss cycle. Hoppe-Seyler’s Z. Physiol. Chem. 363:599–607.

    Article  PubMed  CAS  Google Scholar 

  30. Paglia, D. E., and Valentine, W. N. 1967. Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J. Lab. Clin. Med. 70:158–169.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer Science+Business Media New York

About this chapter

Cite this chapter

Guarnieri, C., Muscari, C., Caldarera, C.M. (1985). Oxygen Radicals and Tissue Damage in Heart Hypertrophy. In: Harris, P., Poole-Wilson, P.A. (eds) Advances in Myocardiology. Advances in Myocardiology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-1287-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-1287-2_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-1289-6

  • Online ISBN: 978-1-4757-1287-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics