Skip to main content

Abstract

Toxicokinetics has gained wide acceptance in validating dose related drug exposure in safety evaluation studies. Although exposure is confirmed by measuring blood levels, the concept of comparing safe/toxic blood concentrations in animals to those in man has not been fully realized. Furthermore, in many cases, the frequency of dosing in animal safety studies may not match with that proposed for use in man. Many examples exist demonstrating that the efficacy, safety and toxicity of a drug are influenced by the mode and frequency of drug administration. Although physiological differences between various animal species and man make direct extrapolations to man difficult, new techniques have been proposed which may allow for reasonably good estimates of pharmacokinetic parameters in man. A successful extrapolation would be very useful in planning and expediting early clinical trials. The relationship between safe dosages, pharmacologic-toxicologic activities, and blood levels can guide in selecting early dosages for initial administration to man and in subsequent dosing escalation strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bachmann, K. (1989). Predicting toxicokinetic parameters in humans from toxicokinetic data acquired from three small mammalian species. J. Appl. Toxicol.,9, 331–338.

    Article  PubMed  CAS  Google Scholar 

  • Barry, H., and A. Yacobi (1984). Preclinical toxicokinetics. In A. Yacobi and H. Barry, III, (Eds.), Experimental and Clinical Toxicokinetics American Pharmaceutical Association, APS, Washington, DC, pp. 1–7.

    Google Scholar 

  • Batra, V. K., and A. Yacobi (1989). An overview of toxicokinetics. In A. Yacobi, J. P. Skelly, and V. K. Batra (Eds.), Toxicokinetics and New Drug Development Pergamon Press, New York, NY, pp. 1–20.

    Google Scholar 

  • Boxenbaum H. (1982). Interspecies scaling, allometry, physiological time, and the ground plan for pharmacokinetics. J. Pharmacokinet. Biopharm.,10, 201–227.

    Article  PubMed  CAS  Google Scholar 

  • Boxenbaum, H. (1984). Interspecies pharmacokinetic scaling and the evolutionary-comparative paradigm. Drug Metab. Rev.,15, 1071–1121.

    Article  PubMed  CAS  Google Scholar 

  • Boyd, E. M., and E. Crinsky (1970). The 100-day LD50 index of Captan. Acta Pharmacol. Toxicol.,29, 226–240.

    Article  Google Scholar 

  • Campbell, D. B., and R. M. J. Ings. (1988) New approaches to the use of pharmacokinetics in toxicology and drug development. Human Toxicol. 7, 469–479.

    Google Scholar 

  • Chappell, W. R., and J. Mordenti (1991). Extrapolation of toxicological and pharmacological data from animals to humans. In B. Testa (Ed.), Advances in Drug Research Academic Press, London. pp. 1–116.

    Google Scholar 

  • de la Iglesia, F. A., and P. Greaves (1989). Role of toxicokinetics in drug safety evaluations. In A. Yacobi, J. P. Skelly, and V. K. Batra (Eds.), Toxicokinetics and New Drug Development Pergamon Press, New York. pp. 21–32.

    Google Scholar 

  • Doherty, P. A., V. H. Fern, and R. P. Smith (1982). Congenital malformations induced by infusion of cyanide in the golden hamster. Toxicol. Appl. Pharmacol.,64, 456–464.

    Article  PubMed  CAS  Google Scholar 

  • Fisher, J. W., T. A. Whittaker, D. H. Taylor, H. J. Clewell III, and M. E. Andersen (1989). Physiologically based pharmacokinetic modeling of the pregnant rat: a multiroute exposure model for trichloroethylene and its metabolite, trichloroacetic acid. Toxicol. Appl. Pharmacol.,99, 395–414.

    Article  PubMed  CAS  Google Scholar 

  • Gabrielsson, J. L. (1991). Utilization of physiologically based models in extrapolating pharmacokinetic data among species. Fund. Appl. Toxicol.,16, 230–232.

    Article  CAS  Google Scholar 

  • Gabrielsson, J. L., and K. S. Larsson (1987). The use of physiological pharmacokinetic models in studies on the disposition of salicylic acid in pregnancy. In H. Nau and W. J. Scott (Eds.), Pharmacokinetics in Teratogenesis CRC Press, Boca Raton, Florida. pp. 13–26.

    Google Scholar 

  • Gaspari, F. and M. Bonati (1990). Interspecies metabolism and pharmacokinetic scaling of theophylline disposition. Drug Metab. Rev.,22, 179–207.

    Google Scholar 

  • Glocklin, V. C., and C. C. Chah (1989). Toxicokinetics in preclinical evaluation of drug safety. In A. Yacobi, J. P. Skelly and V. K. Batra, (Eds.), Toxicokinetics and New Drug Development. Pergamon Press, New York, NY, pp. 33–41.

    Google Scholar 

  • Hawkins, D. R., and L. F. Chasseaud (1985). Reasons for monitoring kinetics in safety evaluation studies. Arch. Toxicol. Suppl.,8, 165–172.

    Article  PubMed  CAS  Google Scholar 

  • Hottendorf, G. H., D. R. VanHarken, H. Madissoo, and B. E. Cabana (1976). Pharmacokinetic considerations in toxicology. Proc. Eur. Soc. Toxicol.,17, 255–262.

    Google Scholar 

  • Ings, R. M. J. (1990). Interspecies scaling and comparisons in drug development and toxicokinetics. Xenobiotica 20, 1201–1231.

    Google Scholar 

  • Komuro, M., H. Matsushita, T. Maeda, T. Shindo, and Y. Kawaguchi (1990). Pharmacokinetic considerations of YP-14. ISSX, San Diego.

    Google Scholar 

  • Levy, G. (1989). Some pharmacodynamic aspects of toxicokinetics. In A. Yacobi, J. P. Skelly, and V. K. Batra (Eds.), Toxicokinetics and New Drug Development Pergamon Press, New York. pp. 97–107.

    Google Scholar 

  • Matsushita, H., H. Suzuki, Y. Sugiyama, Y. Sawada, T. Iga, M. Hanano, and Y. Kawaguchi (1990). Prediction of the pharmacokinetics of Cefodizime and Cefotetan in humans from pharmacokinetic parameters in animals. J. Pharmacobio. Dyn..13, 602–611.

    Article  PubMed  CAS  Google Scholar 

  • Mordenti, J. (1985). Pharmacokinetic scale-up: accurate prediction of human pharmacokinetic profile from animal data. J. Pharm. Sci.,74, 1097–1099.

    Article  Google Scholar 

  • Mordenti, J. (1986). Man versus beast: pharmacokinetic scaling in mammals. J. Pharm. Sci., 75, 1028–1040.

    Google Scholar 

  • Mordenti, J., and W. Chappell (1989). The use of interspecies scaling in toxicokinetics. In A. Yacobi, J. P. Skelly and V. K. Batra, (Eds.), Toxicokinetics and New Drug Development Pergamon Press, New York. pp. 42–96.

    Google Scholar 

  • Nau, H. (1983). The role of delivery systems in toxicology and drug development. Pharm. Internat.,4, 228–231.

    CAS  Google Scholar 

  • Nau, H. (1991). Pharmacokinetic considerations in the design and interpretation of developmental toxicity studies. Fund. Appl. Toxicol.,16, 219–221.

    Article  CAS  Google Scholar 

  • Patel, B.A., F. D. Boudinot, R. F. Schinazi, J. M. Gallo, and C. K. Chu (1990). Comparative pharmacokinetics and interspecies scaling of 3’-azido- 3’deoxythymidine (AZT) in several mammalian species. J. Pharmacobio. Dyn.,13, 206–211.

    Article  Google Scholar 

  • Paustenback, D. J., H. J. Clewell, III, M. L. Gargas, and M. E. Andersen (1988). Physiologically based pharmacokinetic model for inhaled carbon tetrachloride. Toxicol. Appl. Pharmacol.,96, 191–211.

    Article  Google Scholar 

  • Powell, S. H., W. L. Thompson, M. A. Luthe, R. C. Stern, D. A. Grossniklaus, D. D. Bloxham, D. L. Groden, M. R. Jacobs, A. O. DiScenna, H. A. Cash, and J. D. Klinger (1983). Once daily vs. continuous aminoglycoside dosing: efficacy and toxicity in animal and clinical studies of gentamicin, nethilmicin and tobramycin. J. Infect. Dis., 147 918–932.

    Article  PubMed  CAS  Google Scholar 

  • Reitz, R. H., J. N. McDougal, M. W. Himmelstein, R. J. Nolan, and A. M. Shumann (1988). Physiologically based pharmacokinetic modeling with methylchloroform: implications for interspecies, high dose/low dose and dose route extrapolations. Toxicol. Appl. Pharmacol.,95, 185–199.

    Article  Google Scholar 

  • Sacher, G. A. (1959). Relation of lifespan to brain weight and body weight in mammals. In G. E. W. Wolstenholme, and M. O’Connor (Eds.), Ciba Foundation Colloquia on Aging. Vol. 5., Churchill, London, pp. 115–133.

    Google Scholar 

  • US FDA, Division of Antiviral Drug Products (1989). Reference guide for the nonclinical toxicity studies of antiviral drugs indicated for the treatment of non-life threatening diseases: evaluation of drug toxicity prior to Phase I clinical studies.

    Google Scholar 

  • Voisin, E. M., M. Ruthsatz, J. M. Collins, and P. C. Hoyle (1990). Extrapolation of animal toxicity to humans: interspecies comparisons in drug development. Regul. Toxicol. Pharmacol.,12, 107–116.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Leal, M., Yacobi, A., Batra, V.K. (1993). Use of Toxicokinetic Principles in Drug Development: Bridging Preclinical and Clinical Studies. In: Yacobi, A., Skelly, J.P., Shah, V.P., Benet, L.Z. (eds) Integration of Pharmacokinetics, Pharmacodynamics, and Toxicokinetics in Rational Drug Development. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-1520-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-1520-0_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-1522-4

  • Online ISBN: 978-1-4757-1520-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics