Skip to main content

“Band Based” Methods for Magnetic Response

  • Chapter
Moment Formation In Solids

Part of the book series: NATO ASI Series ((NSSB,volume 117))

Abstract

These lectures are concerned with methods of treating magnetic response within the framework of band theory. These methods have mostly been developed with application to transition metals and alloys in mind, and such applications form the central core of the present material. However, we shall attempt to discuss the extent to which such methods may be applied to other systems, such as actinide and even intermediate valence compounds. An approach based on band theory is certainly called for when the electrons responsible for the formation of magnetic moments are strongly itinerant, moving rapidly from atom to atom. In this case, as with the 3d electronsin transition metals or 5f electrons in some actinide systems, the magnetic electrons contribute importantly to bonding and to the Fermi surface. However, the application of band theory to such systems cannot be too naive. The existence of magnetic moments indicates that the interaction between electrons is important so that correlation effects are strong. Treatment of correlation has proceeded along various lines:

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. M. Edwards and J. A. Hertz, J. Phys. F 3 2191 (1973).

    Article  ADS  Google Scholar 

  2. J. A. Hertz, Proc. Int. Conf. Magnetism (ICM-73) Vol. 3 p. 354 (“Nauka” Moscow 1974 ).

    Google Scholar 

  3. A. Liebsch, Phys. Rev. B 23 5203 (1981).

    Article  ADS  Google Scholar 

  4. J. Igarashi, J. Phys. Soc. Japan 52 2827 (1983).

    Article  Google Scholar 

  5. W. Kohn and L. J. Sham, Phys. Rev. 140 A1133 (1965).

    Article  MathSciNet  ADS  Google Scholar 

  6. U. von Barth and L. Hedin, J. Phys. C 5 1629 (1972).

    Article  ADS  Google Scholar 

  7. M. Levy, Proc. Natl. Acad. Sci. USA 76–6062 (1979).

    Google Scholar 

  8. J. P. Perdew and A. Zunger, Phys. Rev. B 23 5048 (1981).

    Article  ADS  Google Scholar 

  9. J. E. Harriman, Phys. Rev. A 24 680 (1981).

    Article  ADS  Google Scholar 

  10. J. F. Janak, Phys. Rev. B 18 7165 (1978).

    Article  ADS  Google Scholar 

  11. A. R. Williams and U von Barth, in “Theory of the Inhomogeneous Electron Gas”eds. S. Lundqvist and N. H. March (Plenum 1983 ).

    Google Scholar 

  12. J. Callaway and N. H. March, to be published.

    Google Scholar 

  13. D. M. Edwards and M. A. Rahman, J. Phys. F 8 1539 (1978).

    Article  Google Scholar 

  14. S. Vosko and J. P. Perdew, Can. J. Phys. 53 1385 (1975).

    Google Scholar 

  15. J. F. Janak, Phys. Rev. B 16 225 (1977).

    Article  ADS  Google Scholar 

  16. V. Heine, J. H. Samson and C. M. M. Nex, J. Phys. F 11 2645 (1981).

    Article  ADS  Google Scholar 

  17. J. F. Cooke, Phys. Rev. B 7 1108 (1973).

    Article  MathSciNet  ADS  Google Scholar 

  18. J. F. Cooke, J. W. Lynn and H. L. Davis, Phys. Rev. B 21 4118 (1980).

    Article  ADS  Google Scholar 

  19. D. M. Edwards and R. B. Muniz, to be published.

    Google Scholar 

  20. R. D. Lowde and C. G. Windsor, Adv. Phys. 19 813 (1970).

    Article  ADS  Google Scholar 

  21. J. Callaway, A. K. Chatterjee, S. P. Singhal and A. Ziegler, to be published.

    Google Scholar 

  22. R. B. Muniz, J. F. Cooke and D. M. Edwards, to be published.

    Google Scholar 

  23. H. A. Mook and D. Tochetti, Phys. Rev. Lett. 43 2029 (1979).

    Article  ADS  Google Scholar 

  24. D. M. Edwards and D. J. Hill, J. Phys. F 6 607 (1976).

    Article  ADS  Google Scholar 

  25. D. M. Edwards, Proc. Int. Conf. Transition Metals 1977: Inst. Phys. Conf. Ser. No. 39 pp. 279–81.

    Google Scholar 

  26. P. Weinberger, C. P. Mallett, R. Podloucky and A. Neckel, J. Phys. C 13 173 (1980): M. S. S. Brooks and P. J. Kelly, to be published.

    Google Scholar 

  27. J. M. Fournier, J. Beille, A. Boeuf, A. Boeuf and A. Wedgwood, Physica 1O2B 282 (1980).

    Google Scholar 

  28. W. J. L. Buyers, T. M. Holden, J. A. Jackman, A. F. Murray, P de V. DuPlessis and O. Vogt., J. Mag. Magn. Mater. 31 229 (1983);

    Article  ADS  Google Scholar 

  29. T. M. Holden, W. J. L. Buyers and E. C. Svensson, Phys. Rev. B 26 6227 (1982); see also chapter by T.M. Holden.

    Google Scholar 

  30. A.F. Murray & W.J.L. Buyers in “Crystalline Electric Field and Structural Effects in F-Electron Systems,” eds. J.E. Crow, R.P. Guertin & T.W. Mihalisin (Plenum 1980 ) p. 257.

    Book  Google Scholar 

  31. Y. Baer, H. R. Ott and K. Andres, Solid State Commun., 36 387 (1980).

    Article  ADS  Google Scholar 

  32. B. Reihl, N. Martensson, P. Hermann, D. E. Eastman and O. Vogt, Phys. Rev. Lett. 46 1480 (1981).

    Article  ADS  Google Scholar 

  33. Seesee shapter by J. Schoenes.

    Google Scholar 

  34. M. Shiga, A.I.P. Conf. Proc. No. 18, 463 (1974).

    Google Scholar 

  35. M. Cyrot and C. Lyon-Caen, J. Phys. C 6 L247 (1973); J. Phys. Paris 36 253 (1975).

    Article  Google Scholar 

  36. B. H. Brandow, Advances in Physics 26 651 (1977).

    Article  ADS  Google Scholar 

  37. see chapter by G.H. Lander.

    Google Scholar 

  38. H. Hasegawa, Solid State Commun. 39 1229 (1981).

    Article  ADS  Google Scholar 

  39. H. Hasegawa, J. Phys. Soc. Japan 46 1504 (1979).

    Article  Google Scholar 

  40. T. Oguchi, K. Terakura and N. Hamada, J. Phys. F 13 145 (1983); B. L. Gyorffy, J. Kollar, A. J. Pindor, G. M. Stocks, J. Staunton and H. Winter, to be published.

    Google Scholar 

  41. D. M. Edwards, J. Mag. Magn. Mater. 1518 262 (1980).

    Google Scholar 

  42. D. M. Edwards, J. Phys. F 12 1789 (1982).

    Article  ADS  Google Scholar 

  43. J. Hubbard, Phys. Rev. B 20 4584 (1979); Phys. Rev. B 23 5974 (1981).

    Google Scholar 

  44. H. Hasegawa, J. Phys. Soc. Japan 49 963 (1980).

    Article  ADS  Google Scholar 

  45. Hasegawa, to be published.

    Google Scholar 

  46. B. Muniz, Ph.D. Thesis (1983), University of London.

    Google Scholar 

  47. S. Shastry, D. M. Edwards and A. P. Young, J. Phys. C 14 L665 (1981).

    Google Scholar 

  48. W. Lynn, Phys. Rev. B 11 2624 (1975).

    Article  ADS  Google Scholar 

  49. P. Wicksted, G. Shirane and O. Steinsvoll, Phys. Rev. B29, 488 (1984).

    Article  ADS  Google Scholar 

  50. J. Brown, D. Deportes, D. Givord and K. R. Ziebeck, J. Appl. Phys. 53, 1973 (1982) and J. Mag. Magn. Mater. 3134, 295 (1983). Hasegawa, Solid State Commun. 38, 401 (1981).

    Google Scholar 

  51. E. Prange and V. Korenman, Phys. Rev. B 19 4691 (1978). Capellmann, Z. Phys. B 34 29 (1979).

    Google Scholar 

  52. B. Sokoloff, J. Phys. F 5 1946 (1975).

    Article  ADS  Google Scholar 

  53. M. Edwards, J. Magn. Mag. Mater. 36 213 (1983).

    Article  ADS  Google Scholar 

  54. Terakura, N. Hamada, T. Oguchi and T. Asada, J. Phys. F 12 1661 (1982).

    Article  ADS  Google Scholar 

  55. D. M. Edwards and J. A. Hertz, unpublished.

    Google Scholar 

  56. J. Hubbard, Proc. Roy. Soc. A 281 401 (1964).

    Article  ADS  Google Scholar 

  57. D. M. Edwards, Phys. Lett. 33A 183 (1970).

    Article  Google Scholar 

  58. J. Hubbard, Proc. Roy. Soc. A 277 237 (1964)

    Google Scholar 

  59. See Chapters by Y. Kuramoto and 9. Gunnarsson.

    Google Scholar 

  60. D. M. Newns and A. C. Hewson, J. Phys. F 10 2429 (1980).

    Article  ADS  Google Scholar 

  61. R. Podloucky and D. Glötzel, Phys. Rev. B 27 3390 (1983).

    Article  ADS  Google Scholar 

  62. H. H. Hill, “Plutonium 1970 and Other Actinides” ed. W. N. MinerNew York: AIME 1970) pp. 2 - 19.

    Google Scholar 

  63. A. Maury, R. Freitag, J. E. Crow, Aly, Phys. Lett. 92A 411 (1982).

    Article  ADS  Google Scholar 

  64. J. Teter, R. Freitag, A. Maury, J Appl. Phys. 53 7910 (1982).

    Article  ADS  Google Scholar 

  65. T. M. Holden, W. J. L. Buyers, P. Tovar, “Valence Instabilities” (North Holland 1982 ).

    Google Scholar 

  66. See Chapter by D. Wohlleben.

    Google Scholar 

  67. W. R. Johansson, G. W. Crabtree, A. S. Edelstein & U.D. McMasters, Phys. Rev. Lett. 46 504 (1981).

    Google Scholar 

  68. B. Cogblin and A. Blandin, Adv. Phys. 17 281 (1968).

    Article  ADS  Google Scholar 

  69. B. Johannsson, Phil. Mag. 30 469 (1974).

    Article  ADS  Google Scholar 

  70. H. H. Hill and E. A. Kmetko, J. Phys. F5 1119 (1975).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer Science+Business Media New York

About this chapter

Cite this chapter

Edwards, D.M. (1984). “Band Based” Methods for Magnetic Response. In: Buyers, W.J.L. (eds) Moment Formation In Solids. NATO ASI Series, vol 117. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-1538-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-1538-5_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-1540-8

  • Online ISBN: 978-1-4757-1538-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics