Skip to main content

Mechanisms and Kinetics of Pollutant Formation during Reaction of Pulverized Coal

  • Chapter
Pulverized-Coal Combustion and Gasification

Abstract

Pollutants arising from the reaction of pulverized coal can be divided into two classifications. The first classification includes pollutants common to all industrial combustion systems: CO, UHC (unburned hydrocarbons), soot, and NO x due to the fixation of atmospheric N2. The second classification includes pollutants formed from the impurities in coal. Sulfurous and nitrogenous pollutant gases and flyash dominate this classification. Other pollutant impurities are chlorine, fluorine, and traces of toxic metals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. A. Field, D. W. Gill, B. B. Morgan, and P. G. W. Hawksley, Combustion of Pulverized Coal, The British Coal Utilisation Research Association, Leatherhead (1967). ( Available from the Institute of Fuel, London. )

    Google Scholar 

  2. J. P. Appleton, Soot oxidation kinetics at combustion temperatures, in Atmospheric Pollution by Aircraft Engines, pp. 20/1–20/11, AGARD Conference Proceedings No. 125 (1973).

    Google Scholar 

  3. C. Park and J. P. Appleton, Shock-tube measurements of soot oxidation rates, Comb. Flame 20 369–379 (1973).

    Article  CAS  Google Scholar 

  4. P. J. Foster, Carbon in flames, J. Inst. Fuel 38, 297–301 (1965).

    CAS  Google Scholar 

  5. K. H. Homann, Carbon formation in premixed flames, Comb. Flame 11, 265–287 (1967).

    Article  CAS  Google Scholar 

  6. H. B. Palmer and C. F. Cullis, The formation of carbon from gases, in Chemistry and Physics of Carbon (P. L. Walker, ed.), Vol. 1, pp. 265–325, Marcel Dekker, New York (1965).

    Google Scholar 

  7. L. I. Boehman and J. E. Davison, Refractory Metals for Advanced Gas Turbine Engines for Combined Cycle Power Plants, Paper presented at 2nd National Conference on Energy and the Environment, College Corner, Ohio (1974).

    Google Scholar 

  8. K. B. Lee, M. W. Thring, and J. M. Beer, On the rate of combustion of soot in a laminar soot flame, Comb. Flame 6, 137–145 (1962).

    Article  CAS  Google Scholar 

  9. J. Nagle and R. F. Strickland-Constable, Oxidation of carbon between 1000° and 2000°, in Proceedings of Fifth Conference on Carbon, Vol. 1, pp. 154–164, Macmillan, New York (1962).

    Google Scholar 

  10. C. P. Fenimore and G. W. Jones, Oxidation of soot by hydroxyl radicals, J. Phys. Chem. 71, 593–597 (1967).

    Article  CAS  Google Scholar 

  11. C. E. Blakeslee and H. C. Burbach, Controlling NO„ emissions from steam generators, J. Air. Pollut. Control Assoc. 23, 37–42 (1973).

    Article  CAS  Google Scholar 

  12. C. McCann, J. Demeter, R. Snedden, and D. Bienstock, Combustion Control of Pollutants from Multi-Burner Coal-Fired Systems, Report EPA-650/2–74038, U.S. Environmental Protection Agency, Washington, D.C. (1974).

    Google Scholar 

  13. D. W. Pershing and J. O. L. Wendt, Pulverized coal combustion: The influence of flame temperature and coal composition on thermal and fuel NOI, in Sixteenth Symposium (International) on Combustion, pp. 389–436, The Combustion Institute, Pittsburgh, Pa. (1977).

    Google Scholar 

  14. D. Pierotti and R. A. Rasmussen, Combustion as a source of nitrous oxide in the atmosphere, Geophys. Res. Lett. 3, 265–267 (1976).

    Article  CAS  Google Scholar 

  15. F. Weiss and H. Craig, Production of atmospheric nitrous oxide by combustion, Geophys. Res. Lett. 3, 751–753 (1976).

    Article  CAS  Google Scholar 

  16. K. Yamagishi, M. Nozawa, T. Yoshie, T. Tokumoto, and Y. Kakegawa. A study of NO, emission characteristics in two stage combustion, in Fifteenth Symposium (International) on Combustion, pp. 1157–1166, The Combustion Institute, Pittsburgh, Pa. (1975).

    Google Scholar 

  17. P. C. Malte, C. A. Halgren, L. E. Monteith, R. C. Corlett, and D. T. Pratt, The Fate of Organic Nitrogen in Jet-Stirred Combustion, Paper No. 76–31, Western States Section, Fall Meeting of the Combustion Institute, La Jolla, Ca. (1976).

    Google Scholar 

  18. Y. B. Zeldovich, The oxidation of nitrogen in combustion explosions, Acta Physicochim. U.S.S.R. 21 577–628 (1946).

    CAS  Google Scholar 

  19. D. L. Baulch, D. D. Drysdale, D. G. Horne, and A. C. Floyd, Evaluated Kinetic Data for High Temperature Reactions,CRC Press, Cleveland, Ohio (1973). (Also, Reports: High Temperature Reaction Rate Data, Nos. 1, 2, and 3, Leeds University, England, 1968 and 1969.)

    Google Scholar 

  20. V. S. Engleman, V. J. Siminski, and W. Bartok, Mechanisms and Kinetics of the Formation of NO and Other Combustion Pollutants, Phase II, Modified Combustion, Report EPR600/7–76–0096, U.S. Environmental Protection Agency, Washington, D.C. (1976).

    Google Scholar 

  21. F. Gouldin, Role of turbulent fluctuations in NO formation, Combust. Sci. Technol 9, 17–23 (1974).

    Article  CAS  Google Scholar 

  22. J. J. Wormeck and D. T. Pratt, Computer modeling of combustion in a Longwell jet-stirred reactor, in Sixteenth Symposium (International) on Combustion, pp. 1583–1592, The Combustion Institute, Pittsburgh, Pa. (1977).

    Google Scholar 

  23. P. C. Malte and D. T. Pratt, The role of energy-releasing kinetics in NO„ formation: Fuel-lean, jet-stirred CO—air combustion, Combust. Sci. Technol. 9, 221–231 (1974).

    Article  CAS  Google Scholar 

  24. P. C. Malte, and D. T. Pratt, Measurement of atomic oxygen and nitrogen oxides in jet-stirred combustion, in Fifteenth Symposium (International) on Combustion, pp. 1061–1070, The Combustion Institute, Pittsburgh, Pa. (1975).

    Google Scholar 

  25. C. P. Fenimore, Formation of nitric oxide in premixed hydrocarbon flames, in Thirteenth Symposium (International) on Combustion, pp. 373–380, The Combustion Institute, Pittsburgh, Pa. (1971).

    Google Scholar 

  26. D. Iverach, K. S. Basden, and N. Y. Kirov, Formation of nitric oxide in fuel-lean and fuel-rich flames, in Fourteenth Symposium (International) on Combustion, pp. 767–776, The Combustion Institute, Pittsburgh, Pa. (1973).

    Google Scholar 

  27. N. P. Cernansky and R. F. Sawyer, NO and NO2 formation in a turbulent hydrocarbon/air diffusion flame, in Fifteenth Symposium (International) on Combustion, pp. 1039–1050, The Combustion Institute, Pittsburgh, Pa. (1975).

    Google Scholar 

  28. M. J. Oven, W. J. McLean, and F. C. Gouldin NO–NO2 Measurements in a Methane-Fueled Swirl-Stabilized Combustion, Paper presented at Spring Technical Meeting, Central States Section, The Combustion Institute, Cleveland, Ohio (1977).

    Google Scholar 

  29. W. H. Wiser, Conversion of coal to liquids—Research opportunities, in Research in Coal Technology: University’s Role, pp. 73–94, Report CONF-741091, U.S. ERDA, Washington, D.C. (1975).

    Google Scholar 

  30. G. L. Tingey and J. R. Morrey, Coal Structure and Reactivity, Battelle Energy Program Report, Battelle Northwest Laboratories, Richland, Washington (1973).

    Google Scholar 

  31. R. D. Hauck, The genesis and stability of nitrogen in peat and coal, in Proceedings of 169th National Meeting of American Chemical Society, Division of Fuel Chemistry, Vol. 20, pp. 85–93, American Chemical Society, Washington, D.C. (1975).

    Google Scholar 

  32. W. H. Hill, Recovery of ammonia, cyanogen, pyridine, and other nitrogenous compounds from industrial gases, in Chemistry of Coal Utilization (H. H. Lowry, ed.), Vol. 2, pp. 1008–1135, John Wiley and Sons, Inc., New York (1945).

    Google Scholar 

  33. J. Klein and H. Jüntgen, Studies on the emission of elemental nitrogen from coals of different rank and its release under geochemical conditions, in Advances in Organic Geochemistry, pp. 647–656, Pergamon Press, Oxford (1972).

    Google Scholar 

  34. D. W. Blair, J. O. L. Wendt, and W. Bartok, Evolution of nitrogen and other species during controlled pyrolysis of coal, in Sixteenth Symposium (International) on Combustion, pp. 475–489, The Combustion Institute, Pittsburgh, Pa. (1977).

    Google Scholar 

  35. P. R. Solomon, The Evolution of Pollutants during the Rapid Devolatilization of Coal, Report R76–952588–2, United Technologies Research Center, East Hartford, Conn. (1977).

    Google Scholar 

  36. D. W. Pershing and J. O. L. Wendt, Relative Contributions of Volatile Nitrogen and Char Nitrogen to NO„ Emissions from Pulverized Coal Flames, Paper presented at 83rd National Meeting of AIChE, Houston, Texas (1977).

    Google Scholar 

  37. J. O. L. Wendt and D. W. Pershing, Physical mechanisms governing the oxidation of volatile fuel nitrogen in pulverized coal flames, Combust. Sci. Technol. 16, 111–121 (1977).

    Article  CAS  Google Scholar 

  38. J. H. Pohl and A. F. Sarofim, Devolatilization and oxidation of coal nitrogen, in Sixteenth Symposium (International) on Combustion, pp. 491–501, The Combustion Institute, Pittsburgh, Pa. (1977).

    Google Scholar 

  39. J. O. L. Wendt and O. E. Schulze, The effect of Diffusion–Reaction Interactions on Fuel Nitrogen Conversion during Coal Char Combustion, Paper presented at Fall Meeting of the Eastern States Section, The Combustion Institute, Silver Spring, Maryland (1974).

    Google Scholar 

  40. A. G. Sharkey, Jr., J. L. Shultz, and R. A. Friedel, Gases from flash and laser irradiation of coal, in Coal Science, Advances in Chemistry Series, Vol. 55, pp. 643–649, American Chemical Society, Washington, D.C. (1966).

    Google Scholar 

  41. R. L. Bond, W. R. Ladner, and G. I. T. McConnell, Reaction of coals under conditions of high energy input and high temperature, in Coal Science, Advances in Chemistry Series, Vol. 55, pp. 650–665, American Chemical Society, Washington, D.C. (1966).

    Google Scholar 

  42. A. E. Axworthy, G. R. Schneider, M. D. Shuman, and V. H. Dayan, Chemistry of Fuel Nitrogen Conversion to Nitrogen Oxides in Combustion, Report EPA–600/2–76–039, U.S. Environmental Protection Agency, Washington, D.C. (1976).

    Google Scholar 

  43. B. S. Haynes, The Formation and Behavior of Nitrogen Species in Fuel Rich Hydrocarbon Flames, Ph.D. Thesis, The University of New South Wales, Sydney (1975).

    Google Scholar 

  44. B. S. Haynes, Reactions of ammonia and nitric oxide in the burnt gases of fuel-rich hydrocarbon–air flames, Comb. Flame 28, 81–89 (1977).

    Article  CAS  Google Scholar 

  45. B. S. Haynes, D. Iverach, and N. Y. Kirov, The behavior of nitrogen species in fuel-rich hydrocarbon flames, in Fifteenth Symposium (International) on Combustion, pp. 1103–112, The Combustion Institute, Pittsburgh, Pa. (1975).

    Google Scholar 

  46. W. E. Kaskan and D. E. Hughes, Mechanism of decay of ammonia in flame gases from NH3/02/N2 flames, Comb. Flame 20, 381–388 (1973).

    Article  CAS  Google Scholar 

  47. A. F. Sarofim, G. C. Williams, M. Modell, and S. M. Slater, Conversion of Fuel Nitrogen to Nitric Oxide in Premixed and Diffusion Flames, Paper presented at AIChE 66th Annual Meeting, Philadelphia, Pa. (1973).

    Google Scholar 

  48. J. N. Mulvihill and L. F. Phillips, Breakdown of cyanogen in fuel-rich H2/N2/02 flames, in Fifteenth Symposium (International) on Combustion, pp. 1113–1122, The Combustion Institute, Pittsburgh, Pa. (1975).

    Google Scholar 

  49. B. S. Haynes, The oxidation of hydrogen cyanide in fuel-rich flames, Comb. Flame 28, 113–122 (1977).

    Article  CAS  Google Scholar 

  50. C. P. Fenimore, Reactions of fuel-nitrogen in rich flame gases, Comb. Flame 26, 249–256 (1976).

    Article  CAS  Google Scholar 

  51. D. I. McLean and H. G. G. Wagner, The structure of the reaction zones of ammonia-oxygen and hydrozine-decomposition flames, in Eleventh Symposium (International) on Combustion, pp. 871–878, The Combustion Institute, Pittsburgh, Pa. (1967).

    Google Scholar 

  52. W. Bartok, V. S. Engleman, R. Goldstein, and E. G. del Valle, Basic Kinetic Studies and Modeling of Nitrogen Oxide Formation in Combustion Processes, Paper presented at AIChE 70th Annual Meeting, Atlantic City, N.J. (1971).

    Google Scholar 

  53. G. D. Ulrich. J. W. Riehl, B. R. French, and R. Desrosiers, The Mechanism of Sub-micron Fly Ash Formation in a Cyclone, Coal-fired Boiler, Paper presented at Engineering Foundation Conference on Ash Deposits and Corrosion Due to Impurities in Combustion Gases, Henniker, N.H. (1977).

    Google Scholar 

  54. E. J. Schulz, R. B. Engdahl, and T. T. Frankenberg, Submicron particles from a pulverized coal fired boiler, Atmos. Environ. 9, 111–119 (1975).

    Article  Google Scholar 

  55. R. C. Flagan, Ash Particle Formation in Pulverized Coal Combustion, Paper No. 77–4, Spring Meeting of the Western States Section, The Combustion Institute, Seattle, Wash. (1977).

    Google Scholar 

  56. R. L. Davison, D. F. S. Natusch, J. R. Wallace, and C. A. Evans, Jr., Trace Elements in fly ash-Dependence of concentration on particle size, Environ. Sci. Technol. 8, 1107–1113 (1974).

    Article  CAS  Google Scholar 

  57. J. W. Kaakinen, R. M. Jorden, M. H. Lawasani, and R. E. West, Trace element behavior in coal-fired power plants, Environ. Sci. Technol. 9, 862–869 (1975).

    Article  CAS  Google Scholar 

  58. A. S. Padia, A. F. Sarofim, and J. B. Howard, The Behavior of Ash in Pulverized Coal under Simulated Combustion Conditions, Paper presented at Spring Meeting of the Central States Section, The Combustion Institute, Columbus, Ohio (1976).

    Google Scholar 

  59. W. H. Ode, Coal analysis and mineral matter, in Chemistry of Coal Utilization (H. H. Lowry, ed.), Supplementary Volume, pp. 150–201, John Wiley and Sons, Inc., New York (1963).

    Google Scholar 

  60. R. S. Mitchell and H. J. Gluskoter, Mineralogy of ash of some american coals: Variations with temperature and source, Fuel 5, 90–96 (1976).

    Article  Google Scholar 

  61. H. J. Gluskoter, Inorganic sulfur in coal, in Proceedings of 169th National Meeting of the American Chemical Society, Division of Fuel Chemistry, Vol. 20, pp. 94–96, American Chemical Society, Washington, D.C. (1975).

    Google Scholar 

  62. P. H. Given and J. R. Jones, Experiments on the removal of sulfur from coal and coke, Fuel 45, 151–158 (1966).

    CAS  Google Scholar 

  63. D. K. Fleming, Purification of intermediate streams in coal gasification, in Clean Fuels from Coal Symposium II, pp. 653–680, Institute of Gas Technology, Chicago, Ill. (1976).

    Google Scholar 

  64. A. Attar, A. H. Corcoran, and G. S. Gibson, Transformation of sulfur functional groups during pyrolysis of coal, in Proceedings of 172nd National Meeting of the American Chemical Society, Division of Fuel Chemistry, Vol. 21, pp. 106–111 American Chemical Society, Washington, D.C. (1976).

    Google Scholar 

  65. W. D. Halstead and E. Raask, The behavior of sulfur and chlorine compounds in pulverized-coal-fired boilers, Inst. Fuel 42, 344–349 (1969).

    CAS  Google Scholar 

  66. W. M. Swift, A. F. Panek, G. W. Smith, G. J. Vogel, and A. A. Jonke, Decomposition of Calcium Sulfate: A Review of the Literature, Report ANL-76–122. Argonne National Laboratory, U.S. ERDA, Argonne, Ill. (1976).

    Google Scholar 

  67. G. H. Gronhovd, P. D. Tufte, and S. J. Selle, Some studies on stack emissions from lignite-fired powerplants, in Proceedings of Bureau of Mines-University of North Dakota Symposium: Technology and Use of Lignite, pp. 83–102, Report No. IC 8650, U.S. Bureau of Mines, Washington, D.C. (1973).

    Google Scholar 

  68. Tennessee Valley Authority, Full–Scale Desulfurization of Stack Gas by Dry Limestone Injection, Report EPA–650/2–73–019, Environmental Protection Agency, Washington, D.C. (1973).

    Google Scholar 

  69. A. R. Ramsden, Application of electron microscopy to the study of pulverized-coal combustion and fly-ash formation, Inst. Fuel 41, 451–454 (1968).

    Google Scholar 

  70. A. R. Ramsden, A microscopic investigation. into the formation of fly-ash during the combustion of a pulverized bituminous coal, Fuel 48, 121–137 (1969).

    CAS  Google Scholar 

  71. E. Raask, Cenospheres in pulverized-fuel ash, Inst. Fuel 41, 339–344 (1968).

    CAS  Google Scholar 

  72. E. Raask, Fusion of silicate particles in coal flames, Fuel 48, 366–374 (1969).

    CAS  Google Scholar 

  73. P. J. Street, R. P. Weight, and P. Lightman, Further investigations of structural changes occurring in pulverized coal particles during rapid heating, Fuel 48, 343–365 (1969).

    CAS  Google Scholar 

  74. G. D. Ulrich, Theory of particle formation and growth in oxide synthesis flames, Combust. Sci. Technol. 4, 47–57 (1971).

    Article  CAS  Google Scholar 

  75. G. D. Ulrich, B. A. Milnes, and N. S. Subramanian, Particle growth in flames. II. Experimental results for silica particle, Combust. Sci. Technol. 14, 243–249 (1976).

    Article  CAS  Google Scholar 

  76. R. I. Bishop, The formation of alkali-rich deposits by a high-chlorine coal, J. Inst. Fuel 41, 51–65 (1968).

    CAS  Google Scholar 

  77. C. P. Fenimore, Two modes of interaction of NaOH and SO2 in gases from fuel-lean H2-air flames, in Fourteenth Symposium (International) on Combustion, pp. 955–963, The Combustion Institute, Pittsburgh, Pa. (1973).

    Google Scholar 

  78. R. A. Durie, G. M. Johnson, and M. Y. Smith, Gas phase reactions of sodium species with sulfur species in hydrocarbon flames, in Fifteenth Symposium (International) on Combustion, pp. 1123–1133, The Combustion Institute, Pittsburgh, Pa. (1975).

    Google Scholar 

  79. H. A. Gollmar, Removal of sulfur compounds from coal gas, in Chemistry of Coal Utilization (H. H. Lowry, ed.), Vol. 2, pp. 947–1007, John Wiley and Sons, Inc., New York (1945).

    Google Scholar 

  80. C. T. Bowman and L. G. Dodge, Kinetics of the thermal decomposition of hydrogen sulfide behind shock waves, in Sixteenth Symposium (International) on Combustion, pp. 971–982, The Combustion Institute, Pittsburgh, Pa. (1977).

    Google Scholar 

  81. C. F. Cullis and M. F. R. Mulcahy, The kinetics of combustion of gaseous sulfur compounds, Combust. Flame 18, 225–292 (1972).

    Article  CAS  Google Scholar 

  82. S. W. Benson, D. M. Golden, R. S. Lawrence, and R. W. Woolfolk, Estimating the Kinetics of Combustion, Report EPA–600/2–75–019, U.S. Environmental Protection Agency, Washington, D.C. (1975).

    Google Scholar 

  83. A. Levy, E. L. Merryman, and W. T. Reid, Mechanisms of formation of sulfur oxides in combustion, Environ. Sci. Technol. 4, 653–662 (1970).

    Article  Google Scholar 

  84. C. P. Fenimore and G. W. Jones, Sulfur in the burnt gas of hydrogen-oxygen flames, J. Phys. Chem. 69, 3593–3597 (1965).

    Article  CAS  Google Scholar 

  85. R. F. Hampson, Jr., and D. Garvin, Chemical Kinetic and Photochemical Data for Modeling Atmospheric Chemistry, Technical Note No. 866, National Bureau of Standards, Washington, D.C. (1975).

    Google Scholar 

  86. W. T. Reid, External Corrosion and Deposits, Boilers and Gas Turbines, American Elsevier Publishing Co., Inc., New York (1971).

    Google Scholar 

  87. E. L. Merryman and A. Levy, Sulfur trioxide flame chemistry-H2S and COS flames, in Thirteenth Symposium (International) on Combustion, pp. 427–436, The Combustion Institute, Pittsburgh, Pa. (1971).

    Google Scholar 

  88. R. E. Barrett, J. D. Hummel!, and W. T. Reid, Formation of SO3 in a noncatalytic combustor, J. Eng. Power 88, 165–171 (1966).

    Article  CAS  Google Scholar 

  89. J. O. L. Wendt, T. L. Corley, and J. T. Morcomb, Interactions between sulfur oxides and nitrogen oxides in combustion process, in Proceedings of the Second Stationary Source Combustion Symposium, Report EPA–600/7–77–073d, U.S. Environmental Protection Agency, Research Triangle Park, N.C. (1977).

    Google Scholar 

  90. D. F. Becker and B. N. Murthy, Feasibility of Reducing Fuel Gas Cleanup Needs. Phase I. Survey of the Effect of Gasification Process Conditions on the Entrainment of Impurities in the Fuel Gas, Contract Report No. FE-1236–15, U.S. ERDA, Washington, D.C. (1976).

    Google Scholar 

  91. J. A. Gray, P. J. Donatelli, and P. M. Yavorsky, Hydrogasification kinetics of bituminous coal and char, in Proceedings of 171st National Meeting of American Chemical Society, Division of Fuel Chemistry, Vol. 20, pp. 103–154, American Chemical Society, Washington, D.C. (1975).

    Google Scholar 

  92. E. M. Magee, Evaluation of Pollution Control in Fossil Fuel Conversion Processes, Report EPA–600/2–76–101, U.S. Environmental Protection Agency, Washington, D.C. (1976).

    Google Scholar 

  93. A. J. Forney, W. P. Haynes, S. J. Gasior, R. M. Kornosky, C. E. Schmidt, and A. G. Sharkey, Trace Element and Major Component Balances Around the Synthane PDU Gasifier, Report PERC/TPR 75/ U.S. ERDA Pittsburgh Energy Research Center, Pittsburgh, Pa. (1975).

    Google Scholar 

  94. M. L. Lee and R. L. Coates, personal communication (1977).

    Google Scholar 

  95. P. Suresh Babu (ed.), Trace Elements in Fuel, Advances in Chemistry Series, Vol. 141, American Chemical Society, Washington, D.C. (1975).

    Google Scholar 

  96. J. F. Farnsworth, Clean Environment with K—T Process, Paper presented at EPA Meeting, Environmental Aspects of Fuel Conversion Technology, St. Louis, Missouri (1974).

    Google Scholar 

  97. C. W. Zielke, G. P. Curran, E. Gorin, and G. E. Goring, Desulfurization of low temperature char by partial gasification, Ind. Eng. Chem. 46, 53–56 (1954).

    Article  CAS  Google Scholar 

  98. P. S. Maa, C. R. Lewis, and C. E. Hamrin, Jr., Sulfur transformation and removal for western Kentucky coals, Fuel 54, 62–69 (1975).

    Article  CAS  Google Scholar 

  99. M. L. Vestal, A. G. Day, J. S. Synderman, G. J. Fergusson, F. W. Lampe, R. H. Essenhigh, and W. H. Johnston, Kinetic Studies on the Pyrolysis, Desulfurization and Gasification of Coals with Emphasis on the Non-isothermal Kinetic Method, Report No. SRIC 70–14, Scientific Research Instruments Corp., Baltimore, Maryland (1969).

    Google Scholar 

  100. A. L. Yergey, F. W. Lampe, M. L. Vestal, A. G. Day, G. J. Fergusson, W. H. Johnston, J. S. Snyderman, R. H. Essenhigh, and J. E. Hudson, Non-isothermal kinetics studies of the hydrodesulfurization of coal, Ind. Eng. Chem. Process Des. Dev. 13, 233–240 (1974).

    Article  CAS  Google Scholar 

  101. W. J. McMichael, A. J. Forney, W. P. Haynes, J. P. Strakey, S. J. Gasior, and R. M. Koronosky, Synthane Gasper Effluent Streams, Report PERC/RI-77/4, U.S. ERDA, Pittsburgh Energy Research Center, Pittsburgh, Pa. (1977).

    Google Scholar 

  102. A. J. Forney, W. P. Haynes, S. J. Gasior, G. E. Johnson, and J. P. Strakey, Jr., Analysis of Tars, Chars, Gases and Water Found in Effluents from the Synthane Process, Technical Progress Report No. 76, Bureau of Mines, Washington, D.C. (1974)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1979 Springer Science+Business Media New York

About this chapter

Cite this chapter

Malte, P.C., Rees, D.P. (1979). Mechanisms and Kinetics of Pollutant Formation during Reaction of Pulverized Coal. In: Smoot, L.D., Pratt, D.T. (eds) Pulverized-Coal Combustion and Gasification. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-1696-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-1696-2_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-1698-6

  • Online ISBN: 978-1-4757-1696-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics