Skip to main content

Abstract

The reliability of BiCMOS process is a key issue in establishing its viability. Some concerns have been raised regarding the increased process complexity and the compatibility of fabricating CMOS and bipolar devices on the same chip. Performance and process tradeoffs are expected as these two device types are merged with minimal additional process steps. Therefore, it is imperative that device reliability issues are integrated with the process architecture and device design issues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References — Process Reliability

  1. T. Ikeda, T. Nagano, N. Momma, K. Miyata, H. Higuchi, M. Odaka, and K. Ogiue, “Advanced BiCMOS Technology for High Speed VLSI”, IEDM Tech. Dig. pp. 408–411, 1986.

    Google Scholar 

  2. A. V. Alvarez, Presented at The Electronic Materials Symposium, 1987.

    Google Scholar 

  3. Fred Haas, Marshall Davis, Rajeeva Lahri, “Wafer Level Reliability Testing Using Keithley Parametric Test System”, Wafer Level Reliability Workshop, Lake Tahoe, 1988.

    Google Scholar 

  4. T. C. Chen, C. Kaya, M. B. Ketchen, and T. H. Ning, “Reliability Analysis of Self-Aligned Bipolar Transistor Under Forward Active Current Stress” IEDM Tech. Dig. pp. 650–653, 1986.

    Google Scholar 

  5. G. A. Sai-Halasz et al., IEEE Trans. Electron Devices, vol. ED-29, no.4, pp. 725731, April 1982.

    Google Scholar 

  6. M. Aoki et. al., Japan Journal of Applied Physics, vol. 21 supplement 21–1, pp. 7378, 1982.

    Google Scholar 

  7. Kazumichi Mitsusada, Hisao Katto, Toru Toyabe, “Design for Alpha Immunity of MOS Dynamic RAMs”, IEDM Tech. Dig., pp. 36–39, 1981.

    Google Scholar 

  8. Sai-Wai Fu, Amr M. Mohesen and Tim C. May, “Alpha-Particle-Induced Charge Collection Measurements and the Effectiveness of a Novel P-Well Protection Barrier on VLSI Memories”, IEEE Transactions on Electron Devices, vol. ED-32, no. 1, Jan. 1985.

    Google Scholar 

  9. Chang-Ming Hsieh, Philip C. Murley and Redmond R. O’Brien, “Collection of Charge from Alpha-Particle Tracks in Silicon Devices”, IEEE Transactions on Electron Devices, vol. ED-30, no. 6, June 1983.

    Google Scholar 

  10. Eiji Takeda, Dai Hisamoto, and Tohru Toyabe, “A new Soft Error Phenomenon in VLSIs” Proceedings International Reliability Physics Symposium, pp. 109–112, 1988.

    Google Scholar 

  11. D. Hisatomo, T. Toyabc, and E. Takeda, “Alpha-Particle-Induced Source-Drain Penetration Effects”, Solid State Devices and Materials Conference, pp. 39–42, Tokyo, Aug. 1987.

    Google Scholar 

  12. C. M. Hsieh. P. C. Murley and R. R. O’Brien, “Dynamics of Charge Collection From Alpha Particle Tracks in Integrated Circuits”, Proceedings International Reliability Physics Symposium, pp. 38–42, 1981.

    Google Scholar 

  13. Hiroo Masuda, Toru Toyabe, Hiroko Shukuri, K. Ohshima and Kiyoo Itoh, “A Full Three Dimensional Simulation on Alpha-Particle Induced DRAM Soft-Errors” IEDM Tech. Dig., pp. 496–499, 1985.

    Google Scholar 

  14. E. Takeda, K. Takeuchi, E. Yamasaki, T. Toyabe, K. Ohshima, and K. Itoh, “Effective Funneling Length in Alpha-Particle Induced Soft-Errors”, Conference on Solid State Devices and Materials, pp. 311–314, Tokyo, 1986.

    Google Scholar 

  15. Hiroshi Momose, T. Wada, I. Kamohara, M. Isobe, J. Matasunga, and H. Nozawa, “A P-type Buried Layer for Protection Against Soft Errors in High Density CMOS Static RAMS” IEDM Tech. Dig., pp. 706–709, 1984.

    Google Scholar 

  16. Rajeeva Lahri, Craig Lage, Rick Jerome and Bami Bastani, “Inherent BiCMOS Soft Error Protection Through an Optimized P + Buried Layer”, Fust International BiCMOS Conference, Philadelphia May 1987.

    Google Scholar 

  17. B. Chappell, S. Schuster, G. Sai-Halasz “Stability and SER Analysis of Static RAM Cells”, IEEE Transactions on Electron Devices, vol. ED-32, no. 2, pp. 463–470, Feb. 1985.

    Article  Google Scholar 

  18. M. Minami, Y. Wakui, H. Motsuki, and T. Nagano, “A New Soft Error Immune Static Memory Cell” IEDM Tech. Dig.,pp. 57–58, 1987.

    Google Scholar 

  19. Solomon “Breakdown in Silicon Oxide - A Review” J. Vac. Sci. Technology, vol. 14, no. S oct. 1977, pp 1122–1130.

    Google Scholar 

  20. I. C. Chen and Chenming Hu “Accelerated Testing of Time-Dependent Breakdown of SiO2” IEEE Electron Device Letters, vol. EDL-8, no. 4, pp. 140–142, Apri11987.

    Google Scholar 

  21. I. C. Chen, S. Holland, and C. Hu “Electrical Breakdown in Thin Gate and Tunneling Oxides” IEEE Transactions on Electron Devices, vol. ED-32, no. 2, pp. 413–422, Feb. 1985.

    Article  Google Scholar 

  22. I. C. Chen, S. Holland, and C. Hu “Oxide Breakdown Dependence on Thickness and Hole Current-Enhanced Reliability of Ultra Thin Oxides” IEDM Tech. Dig., pp. 660–663, 1986.

    Google Scholar 

  23. T. Tsukura and S. Ueda “The Prevention Against Ashing Damage” Semiconductor World Japan, February 1987 (in Japanese).

    Google Scholar 

  24. C. Hu, “Thin Oxide Reliability”, IEDM Tech. Dig., pp. 368–371, 1985.

    Google Scholar 

  25. Marshall Davis and Rajeeva Lahri, IEEE Electron Device Letters, Vol. 9, No. 4, April 1988.

    Google Scholar 

  26. S. M. Sze “Physics of Semiconductor Devices”, A Wiley-Interscience Publication, John Wiley & Sons, New York, p. 482

    Google Scholar 

  27. Yoav Nissan-Cohen, H. H. Woodbury, T. B. Gorczyca, C. Y. Wei “The Effect of Hydrogen on Hot Carrier Immunity, Radiation Hardness, and Gate Oxide Reliability in MOS Devices”, Proceedings VLSI Tech. Symposium, pp. 37–38, 1988.

    Google Scholar 

  28. M. L. Chen, C. W. Leung, W. T. Cochran, S. Jain, H. P. W. Hey, H. Chew, and C. Dziuba “Hot Carrier Aging in Two Level Metal Processing” IEDM Tech. Dig., pp. 5558, 1987.

    Google Scholar 

  29. T. Sakurai, M. Kakumu, and T. Iizuka “Hot Carrier Suppressed VLSI with Sub-micron Geometry’ Proceedings International Solid State Circuits Conference, pp. 272273, 1985.

    Google Scholar 

  30. Hai Wang, M. Davis, and R. Lahri “Transient Substrate Current Effects on N-Channel MOSFET Device lifetime” IEDM Tech. Dig., 1988 (to be presented)

    Google Scholar 

  31. Hai Wang, Steven Bibyk, and M. Davis, Presented at the ECS Fall Conference, 1988.

    Google Scholar 

  32. S. P. Joshi, R. Lahri, and C. Lage “Poly Emitter Bipolar Hot Carrier Effects in an Advanced BiCMOS Technology’ IEDM Tech. Dig., pp. 182–185, 1987.

    Google Scholar 

  33. S. P. Joshi, National Semiconductor, Private Communication

    Google Scholar 

  34. B. Bastani, B. Landau, D. Hausien, R. Lahri, S. P. Joshi and Jim Small, Proceedings Bipolar Circuits and Technology Meeting, pp. 117–120, 1988.

    Google Scholar 

  35. D. Gardner, T. Michalka, K. Saraswat, T. Barbee, J. Mcvittie, and J. Meindl “Layered and Homogeneous Films Films of Aluminum and aluminum/Silicon with Titanium and Tungsten for Multilevel Interconnects” IEEE Journal of Solid State Circuits vol. SC-20, no. 1, pp. 94–103, Feb.1985.

    Article  Google Scholar 

  36. J. Maiz and B. Sabi “Electromigration Testing of Ti/Al-Si Metallization for Integrated Circuits ” Proceedings International Reliability Physics Symposium, pp. 145–153, 1987.

    Google Scholar 

  37. S. S. lyer and C. Y. Ting “Electromigration Study of Al-CuTTi/A1-Cu System”, Proceedings International Reliability Physics Symposium, pp. 273–278, 1984.

    Google Scholar 

  38. Fred Whitwer, Fred Haas, and Craig Lage “The Influence of Titanium Capped Aluminum on N + /P Junction Leakage” Proceedings IEEE VLSI Multilevel Interconnect Conference, pp. 484–490,1988.

    Google Scholar 

  39. S. K. Groothius and W. H. Schroen, “Stress Related Failures Causing Open Metallization” Proceedings International Reliability Physics Symposium, pp. 1–8, 1987.

    Google Scholar 

  40. Ronald R. Troutman, “Recent Developments in CMOS Latchup” IEDM Tech. Dig., pp. 296–299, 1984.

    Google Scholar 

  41. D. B. Estreich, “The Physics and Modeling of latchup and CMOS Integrated Circuits” Ph.D. Dissertation, Stanford University, Stanford, CA October 1980.

    Google Scholar 

  42. R. S. Payne, W. N. Grant, and W. J. Bertram “Elimination of Latchup in Bulk CMOS”, IEDM Tech. Dig., pp. 248–251, 1980.

    Google Scholar 

  43. A. R. Alvarez, J. Teplik, D. W. Schucker, T. Hulseweh, H. B. Liang, M. Dydyk, I. Rahim, “Second Generation BiCMOS Gate Array Technology” Proceedings IFFF Bipolar Circuits and Technology Meeting, pp. 113–117, 1987.

    Google Scholar 

  44. J. Manoliu, “Isolated Topics for High-Density BiCMOS”, Proceedings of Bipolar and BiCMOS VLSI Technology Symposium, 1987.

    Google Scholar 

  45. C. Lage, National Semiconductor Corp., Private communication.

    Google Scholar 

  46. C. Duvvury, R. N. Rountree, and L. S. White, “A Summary of Most Effective Electrostatic Discharge protection Circuits for MOS Memories and their Observed Failure Modes”, Proceedings International Reliability Physics Symposium, pp. 181–184.

    Google Scholar 

  47. T. V. Hulett, “On Chip Protection of NMOS Devices”, Electrical Overstress/Electrostatic Discharge Symposium Proc. EOS-3, pp. 90–96, Sep. 1981.

    Google Scholar 

  48. C. Duvvury, R. N. Rountree, Y. Fong, R. A. McPhee, “ESD Phenomena and Protection Issues in CMOS Output Buffers”

    Google Scholar 

  49. D. C. Wunch, R. R. Bell, “Determination of Threshold Failure Levels of Semiconductor Diodes and Transistors Due to Pulse Voltages”, IEEE Trans. Nucl. Sci. NS-15, 1968.

    Google Scholar 

  50. L. A. Schreier, “Electrostatic Damage Susceptibility of Semiconductor Devices”, Proceedings International Reliability Physics Symposium, 1978.

    Google Scholar 

  51. B. A. Unger, “Electrostatic Discharge failures of Semiconductor Devices”, Proceedings International Reliability Physics Symposium, pp. 193–199, 1981.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lahri, R., Joshi, S.P., Bastani, B. (1990). Process Reliability. In: Alvarez, A.R. (eds) BiCMOS Technology and Applications. The Springer International Series in Engineering and Computer Science, vol 76. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-2029-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2029-7_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-2031-0

  • Online ISBN: 978-1-4757-2029-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics