Skip to main content

The Cyclic Amp Producing Pathway in Saccharomyces Cerevisiae Involves CDC25 and ras Genes Products

  • Chapter
The Guanine — Nucleotide Binding Proteins

Abstract

In mammalian cells, the adenylate cyclase is regulated by extracellular signaling molecules, hormones and neurotransmitters. This regulation involves specific transmembrane receptors and transducers which are heterotrimer G-proteins. In response to the liganded receptor the G-protein is activated by dissociation of the GTP-bound a subunit which can then activate the adenylate cyclase. Although this complex system which also involves negative regulatory circuit, has been extensively studied, the details of its functioning have not yet been completely elucidated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barbacid, M., 1987, ras genes Ann. Rev. Biochem. 56, 779–827

    Article  PubMed  CAS  Google Scholar 

  • Boutelet, F., PetitJean, A., and Hilger, F., 1985, CDC35 mutants are defective in adenylate cyclase and are allelic with cyrl mutants while casl, a new gene , is involved in the regulation of adenylate cyclase. Embo J. , 4 , 2635–2642.

    PubMed  CAS  Google Scholar 

  • Boy-Marcotte, E., Garreau, H., and Jacquet, M., 1987, Cyclic AMP controls the switch between division cycle and resting state programs in response to ammonium availability in Saccharomyces cerevisiae. Yeast 3, 85–93

    Article  PubMed  CAS  Google Scholar 

  • Broek, D., Toda, T., Michaeli, T., Levin, L., Birchmeier, C., Zoller, M., Powers, S., and Wigler, M., 1987, The S. cerevisiae CDC25 gene product regulates the RAS/ adenylate cyclase pathway. Cell, 48 , 789–799

    Article  PubMed  CAS  Google Scholar 

  • Camonis, J., Kalekine, M., Gondré, B., Garreau, H., Boy-Marcotte, E., and Jacquet, M., 1986, Characterization, cloning and sequence analysis of CDC25 gene which controls the cyclic AMP level of Saccharomyces cerevisiae. The EMBO J., 5, 375–380.

    CAS  Google Scholar 

  • Camonis, J., and Jacquet, M., 1988, A new ras mutation which suppresses the CDC25 gene requirement for growth in Saccharomyces cerevisiae. Mol. Cell Biol. 8, 2980–2983.

    PubMed  CAS  Google Scholar 

  • Casperson, G.F., Walker, N., Brassier, A.R., and Bourne, H.R., 1983, A guanine nucleotide sensitive adenylate cyclase in the yeast Saccharomyces cerevisiae. J. Biol. Chem. 158, 7911–7914

    Google Scholar 

  • Casperson, G.F., Walker, N., and Bourne, R.H., 1985, Isolation of the gene encoding adenylate cyclase in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 82, 5060 – 5063

    Article  PubMed  CAS  Google Scholar 

  • Daniel, J., and Simchen, C., 1986, Clones from two different genomic regions complement the cdc25 start mutation of Saccharomyces cerevisiae Curr. Genet., 10 , 643–646.

    CAS  Google Scholar 

  • DeFeo-Jones, D., Scolnick, E., Koller, R., and Dhar, R. 1983 ray-related gene sequence identified from Saccharomyces cerevisiae. Nature , 306, 707–709

    Google Scholar 

  • Feig, L.A., Pan, B., Roberts, T.M., and Cooper, G.M., 1986, Isolation of ras GTP-binding mutants using an in situ colony binding assay. Proc. Natl. Acad. Sci. USA 83, 4607 – 4611

    Google Scholar 

  • Jacquet, M., and Camonis, J., 1985, Contrôle du cycle de division cellulaire et de la sporulation chez Saccharomyces cerevisiae par le système de l’AMPc . Biochimie, 67, 35–43.

    Article  PubMed  CAS  Google Scholar 

  • Kataoka, T., Powers, S., McGill, C., Fasano, O., Strathern, J., Broach, J.R., and Wigler, M., 1984, Genetic analysis of yeast RAS1 and RAS2 genes. Cell , 37, 437–445.

    CAS  Google Scholar 

  • Kataoka, T., Powers, S., Cameron, S., Fasano, O., Golfarb, M., Broach, J., and Wigler, M, 1985a, Functional homology of mammalian and yeast ras genes Cell 40, 19–26

    Article  PubMed  CAS  Google Scholar 

  • Kataoka, T., Broek, D., and Wigler, M., 1985b, DNA sequence and characterization of the S. cerevisiae gene encoding adenylate cyclase Cell 43, 493–505

    CAS  Google Scholar 

  • Lissziewiecz, J., Godany, A., Förster, H.H., Küntzel, H., 1987, Isolation and nucleotide sequence of a Saccharomyces cerevisiae protein kinase gene suppressing the cell cycle start mutation cdc25. J. Biol Chem 262, 2549–2553

    Google Scholar 

  • Martegani, E., Baroni, M. D., Frascotti, G., and Alberghina, L., 1986, Molecular cloning and transcriptional analysis of the start gene CDC25 of Saccharomyces cerevisiae . EMBO J. 5, 2363–2369.

    PubMed  CAS  Google Scholar 

  • Masson, P., Jacquemin, J. M., and Culot, M., 1984, Molecular cloning of the tsm0185 gene responsible for adenylate cyclase activity in Saccharomyces cerevisiae. Ann. Microbiol. (Inst. Pasteur), 135, 344–351

    Google Scholar 

  • Masson, P., Lenzen, G., Jacquemin, J.M., and Danchin, A., 1986, Yeast adenylate cyclase catalytic domain is carboxy terminal Currr. Genet. 10, 343–352

    Article  CAS  Google Scholar 

  • Matsumoto, K., Uno, I., Oshima Y., and Ishikawa, T., 1982, Isolation and characterization of yeast mutants deficient in adenylate cyclase and cAMP -dependent protein kinase. Proc. Natl. Acad. Sci. USA 79, 2355–2359

    Article  PubMed  CAS  Google Scholar 

  • Powers, S., Kataoka, T., Fasano, O., Goldfarb, M., Strathern, J.N., Broach, J.R. and Wigler, M., 1984, Genes in S. cerevisiae encoding proteins with domains homologous to the mammalian ras proteins . Cell, 36 , 607–612.

    Article  PubMed  CAS  Google Scholar 

  • Pringle, J.R., and Hartwell, L.W., 1981, The Saccharomyces cerevisiae cell cycle . In Strathern, J.N., Jones, E.W., and Broach, J. R. (Eds)” The molecular biology of the yeast Saccharomyces cerevisiae : life cycle and inheritance. Cold Spring Harbor laboratories, N.Y. 97–142.

    Google Scholar 

  • Robinson, L.C., Gibbs, J.B., Marshall, M.S., Sigal, LS., and Tatehell, K., 1987, CDC25 : a component of the RAS-adenylate cyclase pathway in Saccharomyces cerevisiae. Science, 235 , 1218–1221.

    Article  PubMed  CAS  Google Scholar 

  • Sigal, LS., Gibbs, J.B., D’Alonzo, LS., Temeles, G.L., Wolanski, B.S., Socher, S.H., and Scolnick, E.M., 1986, Mutant ras-encoded proteins with altered nucleotide binding exert dominant biological effect. Proc. Natl. Acad. Sci. USA 83, 952–956

    Article  PubMed  CAS  Google Scholar 

  • Tatchell, K., Chaleff, D., DeFoe-Jones, D., and Scolnick, E.M., 1984, Requirement of either of a pair of ras-related genes of Saccharomyces cerevisiae for spore viability Nature 309, 523–527

    CAS  Google Scholar 

  • Thevelein, LM., 1984, Cyclic-AMP content and trehalase activation in vegetative cells and ascospores of yeast. Arch. Microbiol. 138, 64–67

    Article  PubMed  CAS  Google Scholar 

  • Toda, T., Cameron, S., Sass, P., Zoller, M., and Wigler, M., 1987, Three different genes in S. cerevisiae encode the catalytic subunits of the cAMP dependent protein kinase. Cell., 50, 277–287 .

    Article  PubMed  CAS  Google Scholar 

  • Zarret, S., and Sherman, F., 1986, DNA sequence required for efficient transcription termination in yeast. Cell, 28 , 563–573 .

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer Science+Business Media New York

About this chapter

Cite this chapter

Jacquet, M., Camonis, J., Boy-Marcotte, E., Damak, F., Garreau, H. (1989). The Cyclic Amp Producing Pathway in Saccharomyces Cerevisiae Involves CDC25 and ras Genes Products. In: Bosch, L., Kraal, B., Parmeggiani, A. (eds) The Guanine — Nucleotide Binding Proteins. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-2037-2_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2037-2_23

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-2039-6

  • Online ISBN: 978-1-4757-2037-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics