Skip to main content

Designing and Analyzing Sample Paths

  • Chapter
Monte Carlo

Part of the book series: Springer Series in Operations Research ((ORFE))

  • 2602 Accesses

Abstract

As in Ch. 5, we take as our objective the estimation of

$$\mu = \mu \left( g \right) = \int_X {g\left( {\text{x}} \right){\text{d}}F\left( {\text{x}} \right)} $$
(1)

, where F denotes an m-dimensional d.f. on \(X \subseteq {\mathbb{R}^m}\). Consider a Monte Carlo Markov sampling experiment composed of n independent replications, each of which begins in a state drawn from an initializing nonequilibrium distribution π0. After a warm-up interval of k — 1 steps on each replication, sampling continues for t additional steps and one uses the n independent truncated sample paths or realizations, each of length t, to estimate µ. Whereas Ch. 5 concentrates on sample path generating algorithms and a conceptual understanding of convergence to an equilibrium state, this chapter focuses on sampling plan design and statistical inference. With regard to design, the chapter shows how the choices of k, n, π0, and t affect computational and statistical efficiency. With regard to statistical inference, it describes methods for estimating the warm-up interval k that significantly mitigate the influence of the initial states drawn from the nonequilibrium distribution π0. Also, it describes methods for computing asymptotically valid confidence intervals for µ in expression (1) as n → ∞ for fixed t, as t → ∞ for fixed n and as both n → ∞ and t → ∞. Because confidence intervals inevitably depend on variance estimates, we need to impose a moderately stronger restriction on g. Whereas the assumption \(\int_X {{g^2}\left( {\text{x}} \right){\text{d}}F\left( {\text{x}} \right)} < \infty \) in Ch. 5 guarantees a finite variance for a single observation on a sample path, the assumption \(\int_X {{g^4}\left( {\text{x}} \right){\text{d}}F\left( {\text{x}} \right)} < \infty \) is necessary for us to obtain consistent estimators of that variance and of other variances that play essential roles in the derivation of asymptotically valid confidence intervals for µ.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aldous, D. (1987). On the Markov chain simulation method for uniform combinatorial distributions and simulated annealing, Prob. in Eng. and Infor. Sci.,1 33–46.

    Google Scholar 

  • Blomqvist, N. (1967). The covariance function of the M/G/1 queueing system, Skandinavisk Aktuarietidskrift, 50, 157–174.

    Google Scholar 

  • Brillinger, D.R. (1973). Estimation of the mean of a stationary time series by sampling, J. Appl. Prob., 10, 419–431.

    Article  Google Scholar 

  • Brockwell, P.J. and R.A. Davis (1991). Time Series: Theory and Methods, 2nd ed., Springer-Verlag, New York.

    Book  Google Scholar 

  • Chien, Chia-Hon (1989). Small sample theory for steady state confidence intervals, Tech. Rep. 37, Department of Operations Research, Stanford University, Stanford, CA.

    Google Scholar 

  • Crane, M.A. and D.L. Iglehart (1974a). Simulating stable stochastic systems I: general multiserver queues, J. ACM, 21, 103–113.

    Article  Google Scholar 

  • Crane, M.A. and D.L. Iglehart (1974b). Simulating stable stochastic systems II: Markov chains, J. ACM, 21, 114–123.

    Article  Google Scholar 

  • Damerdji, H. (1994). Strong consistency of the variance estimator in steady-state simulation output analysis, Math. Oper. Res., 19, 494–512.

    Article  Google Scholar 

  • Diaconis, P. and B. Sturmfels (1993). Algebraic algorithms for sampling from conditional distributions, Tech. Rep. 430, Department of Statistics, Stanford University, Stanford, CA.

    Google Scholar 

  • Fishman, G.S. (1973a). Statistical analysis for queueing simulations, Management Science, 20, 363–369.

    Article  Google Scholar 

  • Fishman, G.S. (1973b). Concepts and Methods in Discrete Event Simulation, Wiley, New York.

    Google Scholar 

  • Fishman, G.S. (1974). Estimation in multiserver queueing simulations, Operations Research, 22, 72–78.

    Article  Google Scholar 

  • Fishman, G.S. (1978). Principles ofDiscrete Event Simulation, Wiley, New York.

    Google Scholar 

  • Fishman, G.S. (1994). Choosing sample path length and number of sample paths when starting in the steady state, Oper. Res. Letters, 16, 209–219.

    Article  Google Scholar 

  • Fishman, G.S. and V.G. Kulkarni (1992). Improving Monte Carlo efficiency by increasing variance, Man. Sci., 38, 1432–1444.

    Article  Google Scholar 

  • Fishman, G.S. and P.J. Kiviat (1967). The analysis of simulation generated time series, Man. Sci., 13, 525–557.

    Article  Google Scholar 

  • Fishman, G.S. and L.S. Yarberry (1990). RAPIDS: Routing algorithm performance investigation and design simulation, UNC/OR/TR/90–12, Department of Operations Research, University of North Carolina at Chapel Hill.

    Google Scholar 

  • Fishman, G.S. and L.S. Yarberry (1994). An implementation of the batch means method, UNC/OR/TR/93–1, Department of Operations Research, University of North Carolina at Chapel Hill.

    Google Scholar 

  • Fox, B.L., D. Goldsman and J.J. Swain (1991). Spaced batch means, Oper. Res. Letters, 10, 255–266.

    Article  Google Scholar 

  • Gelman, A. and D.B. Rubin (1992). Inference from iterative simulation using multiple sequences, Statistical Sciences, 7, 457–511.

    Article  Google Scholar 

  • Glynn, P. (1987) Limit theorems for the method of replication, Stochastic Models, 3, 343–355.

    Article  Google Scholar 

  • Glynn, P. and D. Iglehart (1988). A new class of strongly consistent variance estimators for steady-state simulations, Stochastic Processes and Their Applications, 28, 71–80.

    Article  Google Scholar 

  • Glynn, P. and D. Iglehart (1990). Simulation output analysis using standardized time series, Math. Opns. Res., 15, 1–16.

    Article  Google Scholar 

  • Gross, D. and C. Harris (1985). Fundamentals of Queueing Theory, 2nd ed., Wiley, New York.

    Google Scholar 

  • Iosifescu, M. (1968). La loi du logarithme itéré pour une classe de variables aléatoires dépendantes, Teorija Veroj, 13, 315–325.

    Google Scholar 

  • Iosifescu, M. (1970). Addendum to La du logarithme itéré pour une classe de variables aléatoires dépendantes, Teorija Veroj, 15, 170–171.

    Google Scholar 

  • Johnson, N.L. and S. Kotz (1970). Continuous Univariate Distributions, Houghton Mifflin. Johnson, N.L. and B.L. Welch (1939). On the calculation of the cumulants of the x-distribution, Biometrika, 31, 216–218.

    Google Scholar 

  • Komlbs, J., P. Major and G. Tusnâdy (1975). An approximation of partial sums of independent r.v.’s and the sample d.f. I, Z. Wahrsch. Verw. Geb., 32, 111–131.

    Article  Google Scholar 

  • Komlôs, J., P. Major and G. Tusnâdy (1976). An approximation of partial sums of independent r.v.’s and the sample d.f. II, Z. Wahrsch. Verw. Geb., 34, 33–58.

    Article  Google Scholar 

  • Major, P. (1976). The approximation of partial sums in independent r.v.’s, Z. Wahrsch. Verw. Geb., 35, 213–220.

    Article  Google Scholar 

  • Meketon, M.S. and P. Heidelberger (1982). A renewal theoretic approach to bias reduction in regenerative simulation, Man. Sci., 28, 173–181.

    Article  Google Scholar 

  • Meketon, M.S. and B.W. Schmeiser (1984). Overlapping batch means: something for nothing? Proc. Winter Sim. Conf., 227–230.

    Google Scholar 

  • Mykland, P. L. Tierney and B. Yu (1992). Regeneration in Markov chain samplers, Tech. Rep. 585, School of Statistics, University of Minnesota.

    Google Scholar 

  • Nummelin, E. (1984). General Irreducible Markov Chains and Non-negative Operators, Cambridge University Press, Cambridge, England.

    Google Scholar 

  • Parzen, E. (1962). Stochastic Processes,Holden Day.

    Google Scholar 

  • Peskun, P.H. (1973). Optimum Monte-Carlo sampling using Markov chains, Biometrika, 60, 607–612.

    Article  Google Scholar 

  • Philipp, W. (1969). The law of the iterated logarithm for mixing stochastic processes, Ann. Math. Statist., 40, 1985–1991.

    Article  Google Scholar 

  • Philipp, W. and W. Stout (1975). Almost sure invariance principle for partial sums of weakly dependent random variables, Memoirs of the American Mathematical Society, 161.

    Google Scholar 

  • Reznik, M.Kh. (1968). The law of the iterated logarithm for some classes of stationary processes, Theory, Probability Appl., 8, 606–621.

    Article  Google Scholar 

  • Schmeiser, B.W. (1982). Batch size effects in the analysis of simulation output, Oper. Res., 30, 556–568.

    Article  Google Scholar 

  • Schmeiser, B.W. and W.T. Song (1987). Correlation among estimators of the variance of the sample mean, Proc. Winter Sim. Conf., 309–317.

    Google Scholar 

  • von Neumann, J. (1941). Distribution of the ratio of the mean square successive difference and the variance, Ann. Math. Stat., 12, 367–395.

    Article  Google Scholar 

  • Yaglom, A. (1962). An Introduction to the Theory of Stationary Random Functions, translated by R.A. Silverman, Prentice-Hall, Englewood Cliffs, NJ.

    Google Scholar 

  • Yarberry, L.S. (1993). Incorporating a dynamic batch size selection mechanism in a fixedsample-size batch means procedure, unpublished Ph.D. thesis, Dept. of Operations Research, University of North Carolina, Chapel Hill.

    Google Scholar 

  • Young, L.C. (1941). Randomness in ordered sequences, Ann. Math. Statist, 12, 293–300.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fishman, G.S. (1996). Designing and Analyzing Sample Paths. In: Monte Carlo. Springer Series in Operations Research. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-2553-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2553-7_6

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-2847-4

  • Online ISBN: 978-1-4757-2553-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics